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This paper is concerned with learning decision makers’ preferences
using data on observed choices from a finite set of risky alterna-
tives. We propose a discrete choice model with unobserved hetero-
geneity in consideration sets and in standard risk aversion. We ob-
tain sufficient conditions for the model’s semi-nonparametric point
identification, including in cases where consideration depends on
preferences and on some of the exogenous variables. Our method
yields an estimator that is easy to compute and is applicable in
markets with large choice sets. We illustrate its properties using a
dataset on property insurance purchases.

This paper is concerned with learning decision makers’ (DMs) preferences us-
ing data on observed choices from a finite set of risky alternatives with monetary
outcomes. The prevailing empirical approach to study this problem merges ex-
pected utility theory (EUT) models with econometric methods for discrete choice
analysis. Standard EUT assumes that the DM evaluates all available alternatives
and chooses the one yielding the highest expected utility. The DM’s risk aversion
is determined by the concavity of her Bernoulli utility function. The set of all
alternatives – the choice set – is assumed to be observable by the researcher.

We depart from this standard approach by proposing a discrete choice model
with unobserved heterogeneity in preferences and unobserved heterogeneity in
consideration sets. Specifically, preferences satisfy the classic Single Crossing
Property (SCP) of Mirrlees (1971) and Spence (1974), central to important stud-
ies of decision making under risk.1 That is, the preference order of any two
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alternatives switches only at one value of the preference parameter.2 Given her
unobserved preference parameter, each DM evaluates only the alternatives in her
unobserved consideration set, which is a subset of the choice set.

Our first contribution is to provide a general framework for point identification
of these models. Our analysis relies on two types of observed data variation. In the
first case, we assume that the data include a single (common) excluded regressor
affecting the utility of each alternative. In the second case, we assume that each
alternative has its own excluded regressor. In both cases, the excluded regres-
sor(s) is independent of unobserved preference heterogeneity. When the excluded
regressor(s) also has large support it becomes a “special regressor” (Lewbel, 2000,
2014). For reasons we explain, the case of the single common excluded regressor is
the most demanding from an identification standpoint. Nonetheless, under clas-
sic conditions for identification of full-consideration discrete choice models (see,
e.g., Lewbel, 2000; Matzkin, 2007) and the SCP, we obtain semi-nonparametric
identification of the preference distribution given basically any consideration set
formation mechanism (henceforth, consideration mechanism).3 We also prove
identification of the consideration mechanism for the widely used Alternative-
specific Random Consideration (ARC) model of Manski (1977) and Manzini and
Mariotti (2014). The identification argument is constructive and applicable be-
yond the ARC model. We establish identification results for preferences that do
not require large support of the excluded regressor(s). We also show that identi-
fication of both preferences and the consideration mechanism is attainable when
consideration depends on preferences. In particular, we introduce (i) binary con-
sideration types, and (ii) proportionally shifting consideration, both of which can
capture the notion that the DM’s attention probabilistically shifts from riskier
to safer alternatives as her risk aversion increases. In these cases, identification
requires that the distribution of the preference parameter admits a continuous
density function.

We can significantly expand our results with alternative-specific excluded re-
gressors. First, we can allow for essentially unrestricted dependence of consid-
eration on preferences without assuming that the excluded regressors have large
support. Second, we show that consideration can depend both on preferences
and on some excluded regressors. We show this for two cases. In the first case,
there is one alternative (the default) that is always considered. The probability of
considering other alternatives can depend on the default-specific excluded regres-
sor. This is a generalization of the models in Heiss et al. (2016); Ho, Hogan and
Scott Morton (2017); Abaluck and Adams (2020), where the consideration mech-
anism only allows for the possibility that either the default or the entire choice set

2The EUT framework satisfies the SCP, which requires that if a DM with a certain degree of risk
aversion prefers a safer lottery to a riskier one, then all DMs with higher risk aversion also prefer the
safer lottery.

3The identification results are semi-nonparametric because we specify the utility function up to a
DM-specific preference parameter. We establish nonparametric identification of the distribution of the
latter.
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is considered. We, however, allow for each subset of the choice set containing the
default to have its own probability of being drawn and this probability can vary
with the DM’s preferences. In the second case, we allow the consideration of each
alternative to depend on its own excluded regressor, but not on the regressors of
other alternatives (Goeree, 2008; Abaluck and Adams, 2020; Kawaguchi, Uetake
and Watanabe, 2020). In addition, consideration may depend on preferences – a
feature unique to our paper.

Our second contribution is to provide a simple method to compute our likelihood-
based estimator. Its computational complexity grows polynomially in the number
of parameters governing the consideration mechanism. Because the SCP gener-
ates a natural ordering of alternatives akin to vertical product differentiation, our
method does not require enumerating all possible subsets of the choice set. If
it did, the computational complexity would grow exponentially with the size of
the choice set. Moreover, we compute the utility of each alternative only once
for a given value of the preference parameter, gaining enormous computational
advantage similar to that of importance-sampling methods.

Our third contribution is to elucidate the applicability and the advantages of
our framework over the standard application of full consideration random utility
models (RUMs) with additively separable unobserved heterogeneity (e.g., Mixed
Logit). First, our model can generate zero shares for non-dominated alternatives.
Second, the model has no difficulty explaining relatively large shares of dominated
alternatives. Third, in markets with many choice domains, our model can match
not only the marginal but also the joint distribution of choices across domains.
Forth, our framework is immune to an important criticism by Apesteguia and
Ballester (2018) against using standard RUMs to study decision making under
risk. As these authors note, combining standard EUT with additive noise re-
sults in non-monotonicity of choice probabilities in the risk preferences, a clearly
undesirable feature.

Random preference models like the ones we consider are random utility models
as envisioned by McFadden (1974) (for a textbook treatment see Manski, 2009).
We show that our random preference models can be written as RUMs with unob-
served heterogeneity in risk aversion and with an additive error that has a discrete
distribution with support {−∞, 0}. Then, it is natural to draw parallels with the
Mixed (random coefficient) Logit model (e.g., McFadden and Train, 2000). In
our setting, the Mixed Logit boils down to assuming that, given the DM’s risk
aversion, her evaluation of an alternative equals its expected utility summed with
an unobserved heterogeneity term capturing the DM’s idiosyncratic taste for un-
observed characteristics of that alternative. However, in some markets it is hard
to envision such characteristics.4 We show that limited consideration models and

4Many insurance contracts are identical in all aspects except for the coverage level and price, e.g.,
employer provided health insurance, auto, or home insurance offered by a single company. In other
contexts, unobservable characteristics may affect choice mostly via consideration – as we model – rather
than via “additive noise”. E.g., a DM may only consider those supplemental prescription drug plans that
cover specific medications.
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the Mixed Logit generate several contrasting implications. First, the Mixed Logit
generally implies that each alternative has a positive probability of being cho-
sen, while a limited consideration model can generate zero shares by setting the
consideration probability of a given alternative to zero. Second, the Mixed Logit
satisfies a Generalized Dominance Property that we derive: if for any degree of
risk aversion alternative j has lower expected utility than either alternative k
or l, then the probability of choosing j must be no larger than the probability
of choosing k or l. Limited consideration models do not necessarily abide Gen-
eralized Dominance. Third, in limited consideration models choice probabilities
depend on the ordinal expected utility rankings of the alternatives, while in the
Mixed Logit it depends on the cardinal ranking. This difference implies that
choice probabilities may be monotone in risk preferences in the limited consider-
ation models we propose, while in the Mixed Logit they are not (Apesteguia and
Ballester, 2018).

We illustrate our method in a study of households’ deductible choices across
three lines of insurance: auto collision, auto comprehensive, and home (all perils).
We aim to estimate the distribution of risk preferences and the consideration
parameters and to assess the resulting fit of the models. We find that the ARC
model does a remarkable job at matching the distribution of observed choices, and
because of its aforementioned properties, outperforms the Mixed Logit. Under the
ARC model, we find that although households are on average strongly risk averse,
they consider lower coverages more often than higher coverages. We also find
support for proportionally shifting consideration. In particular, risk-neutral DMs
consider each of the safer alternatives 15% (11%) less often than do extremely
risk averse DMs (DMs with median risk aversion).

The rest of the paper is organized as follows. We describe the model of DMs’
preferences in Section I, and study identification in Section II. In Section III we
describe the computational advantages of our approach. Section IV compares
our model to the Mixed Logit. Section V presents our empirical application.
Section VI contextualizes our contribution relative to the extant literature and
offers concluding remarks.

I. Preferences

A. Decision Making under Risk in a Market Setting: An Example

Consider as an example the following insurance market, which mimics the set-
ting of our empirical application. There is an underlying risk of a loss that occurs
with probability µ that may vary across DMs. A finite number of alternatives
are available to insure against this loss. Conditional on risk type, i.e., given µ,
each alternative j ∈ D ≡ {1, . . . , D} is fully characterized by the pair (dj , pj).
The first element is the insurance deductible, which is the DM’s out of pocket
expense in the case a loss occurs. Deductibles are decreasing with index j, and all
deductibles are less than the lowest realization of the loss. The second element is
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the price (insurance premium), which also varies across DMs. For each DM there
is a baseline price p̄ that determines prices for all alternatives faced by the DM
according to the multiplication rule pj = gj ·p̄+δ. Lower deductibles provide more
coverage and cost more, so gj is increasing with j. Both gj and δ are invariant
across DMs. The lotteries that DMs face are Lj(x) ≡ (−pj , 1− µ;−pj − dj , µ),
where x ≡ p̄. DMs are expected utility maximizers. Given initial wealth w, the
expected utility of deductible lottery Lj(x) is

Uν(Lj(x)) = (1− µ)uν (w − pj) + µuν (w − pj − dj) ,

where uν(·) is a Bernoulli utility function defined over final wealth states. We
assume that uν(·) belongs to a family of utility functions that are fully charac-
terized by a scalar ν (e.g. Constant Absolute Risk Aversion (CARA), Constant
Relative Risk Aversion (CRRA), or Negligible Third Derivative (NTD)), which
varies across DMs.5

Given the risk type, the relationship between risk aversion and prices is stan-
dard. At sufficiently high p̄, less coverage is always preferred to more cover-
age for all ν on the support: Uν(L1(x)) > Uν(L2(x)) > · · · > Uν(LD(x)).
At sufficiently low p̄, we have the opposite ordering for all ν on the support:
Uν(LD(x)) > Uν(LD−1(x)) > · · · > Uν(L1(x)). At moderate prices, for each
pair of deductible lotteries j < k there is a cutoff value cj,k(x) in the interior of
ν’s support, found by solving Uν(Lj(x)) = Uν(Lk(x)) for ν. On the left of this
cutoff the higher deductible is preferred and on the right the lower deductible is
preferred. In other words, cj,k(x) is the unique coefficient of risk aversion that
makes the DM indifferent between Lj(x) and Lk(x), known to the researcher
at any given x. Those with lower ν choose the riskier alternative Lj(x), while
those with higher ν choose the safer alternative Lk(x). Provided Uν(·) is smooth
in ν, cj,k(x) is smooth in x. In fact, under CARA, CRRA, or NTD, cj,k(x) is
a continuously differentiable monotone function. The prices are such that, un-
der CARA, CRRA, or NTD, whenever Uν(L1(x)) > Uν(Lj(x)) it is also the
case that Uν(L1(x)) > Uν(Lj+1(x)).6 As we show below, this can be stated as
c1,j(x) < c1,j+1(x). That is, if the DM’s risk aversion is so low that she prefers
the riskiest lottery to a safer one, then she also prefers it to an even safer one. Fi-
nally, there are no three-way ties. That is, for a given x there are no alternatives
{j, k, l} such that Uν(Lj(x)) = Uν(Lk(x)) = Uν(Ll(x)).7

B. Preferences with Single Crossing Property

There is a continuum of DMs. Each of them faces a choice among a finite
number of alternatives, i.e., a choice set, which is denoted D = {1, . . . , D}. The

5Under CRRA, it is implied that DMs’ initial wealth is known to the researcher. NTD utility is
defined in Cohen and Einav (2007) and in Barseghyan et al. (2013).

6We analytically verify this claim for our application in Online Appendix B, but it can also be checked
numerically for any given dataset.

7It is straightforward to very this condition, and we do so in our application.
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number of alternatives is invariant across DMs. Alternatives vary by their utility-
relevant characteristics and are distinguished by (at least) one characteristic,
dj ∈ R, j ∈ D, which is DM invariant. This characteristic reflects the qual-
ity of alternative j (e.g., insurance deductible). When it is unambiguous, we may
write dj instead of “alternative j”. Other characteristics may vary across DMs
or across alternatives. Our analysis rests on the excluded regressor(s) x. To keep
the notation as lean as possible, we state our assumptions and results implicitly
conditioning on all remaining characteristics. Hence, alternative j is fully char-
acterized by (dj , xj). We consider two cases. In one case, all xj ’s are perfectly
correlated with a single (common) excluded regressor, x (e.g., p̄ in our insurance
example). In the other case, each xj has its own variation conditional on all other
xk, k 6= j (e.g., each alternative on the market exhibits locally independent price
variation).

Assumption T0. The random variable (or vector) x has a strictly positive den-
sity on a set S ⊂ R

(
S ⊂ RD, dimS = D

)
.

Each DM’s valuation of the alternatives is defined by a utility function Uν(dj , x),
which depends on a DM-specific index ν distributed according to F (·) over a
bounded support.8

Assumption T1. The density of F (·), denoted f(·), is continuous and strictly
positive on [0, ν̄] and zero everywhere else.

The DMs’ draws of ν are not observed by the researcher. We require that DMs’
preferences satisfy the Single Crossing Property (SCP).

Assumption T2 (Single Crossing Property). For any two alternatives, dj and
dk, there exists a continuously differentiable function cL,R : S → R[−∞,∞] s.t.

Uν(dL, x) > Uν(dR, x) ∀ν ∈ (−∞, cL,R(x))

Uν(dL, x) = Uν(dR, x) ν = cL,R(x)

Uν(dL, x) < Uν(dR, x) ∀ν ∈ (cL,R(x),∞).

where (L,R) = (j, k) or (L,R) = (k, j). We refer to cL,R(·) as the cutoff between
dL and dR.

The SCP implies that the DM’s ranking of alternatives is monotone in ν. In the
context of risk preferences, if a DM with a certain level of risk aversion prefers a
safer asset to a riskier one, then all DMs with higher risk aversion also prefer the
safer asset. Since the cutoffs may be infinite, the SCP does not exclude dominated
alternatives.

Definition 1 (Dominated Alternatives). Given x, alternative dj is dominated if

8We assume that while ν has bounded support, the utility function is well defined for any real valued
ν.
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there exists an alternative dk such that ∀ν ∈ R, Uν(dk, x) > Uν(dj , x).

We now establish some useful facts that follow from Assumption T2. First, the
index L in cL,R(·) indicates the alternative that is preferred on the left of the
cutoff. It is without loss of generality to assume L = min(j, k) and R = max(j, k)
because of the following fact:

Fact 1 (Natural Ordering of Alternatives). Suppose Assumption T2 holds. Then
alternatives can be enumerated such that as ν → −∞, Uν(d1, x) > Uν(d2, x) >
· · · > Uν(dD, x) for all x at which no alternative is dominated.

We assume that alternatives are enumerated according to the Natural Ordering
of Alternatives.9 As the next fact shows, for high values of ν the preference over
the Natural Ordering of Alternatives is reversed.

Fact 2 (Rank Switch). Suppose Assumption T2 holds. Consider any x such that
no alternative is dominated. As ν →∞, Uν(d1, x) < Uν(d2, x) < · · · < Uν(dD, x).

The SCP also has implications for the relative position of the cutoffs. For
readability, we state them for alternatives {d1, d2, d3}, but they hold for any
{dj , dk, dl}, j < k < l.

Fact 3 (Simple Relative Order of Cutoffs). Suppose Assumption T2 holds. Given
x, if c1,2(x) < c1,3(x), then c1,3(x) < c2,3(x) or both d1 and d2 dominate d3

(c1,3(x) = c2,3(x) =∞).

The next fact concerns the relative order of cutoffs for non-dominated alterna-
tives. Before stating it, it is convenient to define Never-the-First-Best Alterna-
tives.

Definition 2 (Never-the-First-Best). Given x, alternative dj is Never-the-First-
Best in D if for every ν there exists another alternative dk(ν) in D such that
Uν(dk(ν), x) > Uν(dj , x).

Fact 4 (Cutoff Relative Order). Suppose that Assumption T2 holds. If, given
x, alternatives d1, d2, and d3 are not dominated, then one and only one of the
following cases holds:

(i) c1,2(x) < c1,3(x) < c2,3(x) and d2 is the first best in {d1, d2, d3}, ∀ν ∈
(c1,2(x), c1,3(x));

(ii) c1,2(x) > c1,3(x) > c2,3(x) and d2 is Never-the-First-Best in {d1, d2, d3};

(iii) c1,2(x) = c1,3(x) = c2,3(x) and d2 is strictly worse than either d1 or d3

for all ν except for ν = c1,2(x) where there is a three-way tie among these
alternatives.

9Under this enumeration, dj will be ordered in either ascending or descending order. In our example
from the previous section, since dj refers to the deductible and ν is the risk aversion coefficient, the
natural ordering implies d1 > d2 > · · · > dD.
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Fact 4 is a convenient way to distill and exploit the SCP. In particular, for any
x, the complete preference order of the alternatives is known for all DMs as well
as the identity (of the preference parameter) of the DM indifferent between any
two alternatives dj and dk.

II. Identification

The classic identification argument for discrete choice under full consideration
rests on the following four canonical assumptions.

Assumption I0. The random variable (or vector) x is independent of prefer-
ences.

Assumption I1. ∃X ⊂ S s.t. c1,2(x) covers the support of ν: [0, ν̄] ⊂
{c1,2(x), x ∈ X}.

Assumption I2. Consideration is independent of preferences.

Assumption I3. Consideration is independent of x.

The last two conditions are vacuous in the standard full consideration model,
while the first two are typically stated as data requirements.

We first discuss how to obtain identification and the role of Assumptions I0-
I3 in the simplest case of two alternatives (Section II.A). We then consider the
general model with D alternatives. Table 1 organizes our results by assumptions
imposed, the consideration mechanism assumed, data availability, and the theo-
rems’ conclusions. Theorems 1-3 in Section II.B demonstrate that the preference
distribution and some features of the consideration mechanism are identified with
a single excluded regressor. Next, we show that alternative-specific variation al-
lows for identification of both the preference distribution and the consideration
mechanism when consideration depends on preferences and one of the excluded
regressors (Theorem 4 and Corollary 1 in Section II.C). We discuss testing for
limited consideration in Section II.D. We then turn to the ARC model in Section
II.E. We show that the full model is identified with a single excluded regressor
(Theorem 5). Moreover, identification attains for a particular case where consid-
eration depends on preferences (Theorem 6). Finally, Theorem 7 shows that with
alternative-specific variation, identification attains when consideration of each al-
ternative depends both on preferences and its own regressor, without requiring
full support.

A. The Role of the Canonical Assumptions

Let the choice set be binary and suppose that the DM considers both alterna-
tives. In addition, let x be a scalar so that there is a single excluded regressor.
Under Assumptions T0-T2 and I0-I3, any realization of x is associated with a
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Table 1—Identification Theorems

Assumptions Consideration Mechanism Excluded Regressor Identification Result

I0 I1 I2 I3 Preferences Consideration

Theorem 1 X X X X Generic Single X X1

Theorem 2 X X X Generic Single X X1

Theorem 3 X X X Loosely Ordered Single X

Theorem 4 X X Generic Alternative Specific X X

Corollary 1 X Generic Alternative Specific X X

Theorem 5 X X X X ARC Single X X

Theorem 6 X X X ARC Single X X

Theorem 7 X ARC Alternative Specific X X

Note: In Theorems 1 and 2 we identify features of the consideration mechanism.

single conditional moment in the data:

Pr(d = d1|x) =

∫ c1,2(x)

0
dF = F (c1,2(x)),

because the DM chooses d1 if and only if her preference parameter is less than
c1,2(x). The distribution F (·) is non-parametrically identified, since for any ν on
the support there is an x such that ν = c1,2(x).

We emphasize two points. First, given a family of utility functions, for any
x the value of the cutoff can be solved for. Hence, the function c1,2(x) (and its
derivatives) can be treated as data. Second, Assumption I1 requires that the cutoff
reaches both ends of the support: there exist x0 and x1 such that F (c1,2(x0)) = 0
and F (c1,2(x1)) = 1.

Turning to limited consideration, suppose that d1 is considered with probability
0 < ϕ1 ≤ 1, and whenever it is considered so is d2.10 Then, d1 is chosen when it
is considered and it is preferred to d2, yielding:

Pr(d = d1|x) = ϕ1F (c1,2(x)) and
dPr(d = d1|x)

dx
= ϕ1f(c1,2(x))

dc1,2(x)

dx
.(1)

At first glance, it appears that the distribution of preferences is identified up to
a constant. Yet, at the boundary of the support Pr(d = d1|x1) = ϕ1F (c1,2(x1)) =
ϕ1, so that ϕ1 is identified. Once ϕ1 is known, the distribution F (·) is identified
by varying c1,2(x) over the support of ν, similar to the full consideration case. We
now explore what happens to identification if Assumptions I0-I3 are not satisfied.

Assumption I0 fails: the variation in x is not independent of preferences.
Then F (·) is not non-parametrically identified under either full or limited consid-
eration.

Assumption I1 fails: the variation in x is such that c1,2(x) only covers an
interval [νl, νu] ⊂ [0, ν̄]. Then the data provide no information about preferences

10With two alternatives this implies that d2 is always considered.
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outside of the interval [νl, νu]. Inside the interval, the conditional distribution

F (ν|ν ∈ [νl, νu]) = F (ν)−F (νl)
F (νu)−F (νl)

is identified under both limited and full consid-

eration. The consideration probability (and hence the scale of F (·)) is partially
identified and satisfies the bounds Pr(d = d1|xu) ≤ ϕ1 ≤ 1, where xu is such that
c1,2(xu) = νu. Point identification can be attained if an additional assumption is
maintained to pin down the scale of F (·). For example, one can simply assume
full consideration and set ϕ1 = 1.

Assumption I2 fails: ϕ1 depends on preferences and this dependence is arbi-
trary. Then identification breaks down completely as there is one data moment
to identify two unknown objects. However, since we assume – as it is common
in the econometrics literature – that the density function of ν is continuous and
strictly positive, identification is possible for some types of dependence between
consideration and preferences. Suppose there are two consideration types:

ϕ1(ν) =

{
ϕ

1
, ∀ν ∈ [0, ν∗)

ϕ1, ∀ν ∈ [ν∗, ν̄]
,

where ν∗ is an unobserved breakpoint. We show that ϕ
1
, ϕ1, and ν∗ are identified.

First, the product ϕ1(ν)f(ν) is identified under Assumptions I0, I1, and I3, since

(2)
dPr(d = d1|x)

dx
=

d

dx

(∫ c1,2(x)

0
ϕ1(ν)dF

)
= ϕ1(ν)f(ν)

dc1,2(x)

dx

at ν = c1,2(x). The product ϕ1(ν)f(ν) is discontinuous only at the point ν∗. Thus,
the breakpoint is identified by continuously varying c1,2(x) across [0, ν̄]. Next, the

ratio
ϕ

1
ϕ1

is identified by the ratio of the right and left derivatives of Pr(d = d1|x)

at the breakpoint x∗ (ν∗ = c1,2(x∗)). The quantity F (ν∗) is identified by the
ratio:

Pr (d = d1|x∗)
Pr(d = d1|x1)− Pr (d = d1|x∗)

=
ϕ

1

ϕ1

· F (ν∗)

1− F (ν∗)
.

Hence, ϕ
1

and ϕ1 are identified. Identification of F (·) on the entire support
follows from Assumption I1. The same argument above applies if the probability
of considering an alternative discretely jumps in x (i.e., Assumption I3 fails).
Concretely, suppose there is a breakpoint in ϕ1(x) at x∗ and let ν∗ = c1,2(x∗).
The breakpoint x∗ is identified by the point of discontinuity in Equation (2), and
the rest follows.

To summarize the case of the binary choice set, the only seemingly real dif-
ference in identification is that without large support the scale of the preference
distribution F (·) is partially identified under limited consideration, while it is
assumed to be known under full consideration. The key to identification is a
one-to-one mapping from a data moment, Pr (d = d1|x), and the preference dis-
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tribution F (·) at a single point on the support, c1,2(x). As we will show next,
even with just a single excluded regressor, Assumptions I0-I3 allow for such a
mapping to be constructed for a generic consideration mechanism and a choice
set of arbitrary size.

B. Single Common Excluded Regressor

We start by introducing general notation for consideration probabilities.

Definition 3. Let Qxν(K) be the probability that, given x, the DM with preference
parameter ν draws consideration set K ⊂ D conditional on x. Let Oxν (A;B) be
the probability that, given x, every alternative in set A is in the consideration set
and every alternative in set B is not for the DM with preference parameter ν:

Oxν (A;B) ≡
∑

K: A⊂K, B∩K=∅

Qxν(K).

The subscript is suppressed when consideration does not depend on prefer-
ences, and the superscript is suppressed when it does not depend on the excluded
regressor(s).

To ease exposition, we build our discussion around a choice set with three
alternatives, D = {d1, d2, d3}, such that c1,2(x) < c1,3(x) < c2,3(x) for all x. That
is, by Fact 3, if Uν(d1, x) > Uν(d2, x) then Uν(d1, x) > Uν(d3, x) for all x. Suppose
consideration is independent of preferences and of the excluded regressor. Then
the choice frequencies of d1 and d3 are

Pr(d = d1|x) = O({d1, d2}; ∅)F (c1,2(x)) +O({d1, d3}; d2)F (c1,3(x))

+O(d1; {d2, d3});

Pr(d = d3|x) = O({d1, d3}; d2)(1− F (c1,3(x))) +O({d2, d3}; ∅)(1− F (c2,3(x)))

+O(d3; {d1, d2}).

Consider the expression for Pr(d = d1|x). Its RHS has three terms. The first
term captures the case when d1 is considered along with d2, which happens with
probability O({d1, d2}; ∅). Given the relative position of the cutoffs, whether d3

is considered or not is irrelevant. The DM will choose d1 over d2 if and only if her
preference parameter is below c1,2(x). The second term captures the case when
d1 is considered along with d3, but d2 is not considered, which happens with
probability O({d1, d3}; d2). Then the relevant cutoff for choosing d1 is c1,3(x).
Third, when d1 is the only alternative considered, it is chosen regardless of the
DM’s risk aversion. This event occurs with probability O(d1; {d1, d2}).

Since there are two cutoffs, c1,2(x) and c1,3(x), that enter the moment Pr(d =
d1|x), there is not, without additional assumptions, a one-to-one mapping between
the moment and the preference distribution at one point on the support, as it was
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the case in Section II.A. That is, as x changes, the observed choice frequency of d1

may change because of two types of marginal DMs: those indifferent between d1

and d2, and those indifferent between d1 and d3. This is apparent in the following
derivative:

dPr(d = d1|x)

dx
=O({d1, d2}; ∅)f(c1,2(x))

dc1,2(x)

dx
(3)

+O({d1, d3}; d2)f(c1,3(x))
dc1,3(x)

dx
.

The corresponding equation for Pr(d = d3|x) does not immediately help, as it
brings about f(·) evaluated at yet another cutoff, c2,3(x):

dPr(d = d3|x)

dx
=−O({d1, d3}; d2)f(c1,3(x))

dc1,3(x)

dx
(4)

−O({d2, d3}; ∅)f(c2,3(x))
dc2,3(x)

dx
.

Identification with Large Support

When Assumption I1 holds, we can construct a one-to-one mapping sequen-
tially. The algorithm for doing so consists of four steps. First, we rewrite Equation
(3) as

(5)
dPr(d = d1|x)

dx
= f̂(c1,2(x))

dc1,2(x)

dx
+ φf̂(c1,3(x))

dc1,3(x)

dx
,

where φ ≡ O({d1,d3};d2)
O({d1,d2};∅) and f̂(ν) ≡ O({d1, d2}; ∅)f(ν). Second, for ν’s near the

far end of the support, we can find x and x′ such that ν = c1,2(x) < ν̄ < c1,3(x)
and ν = c1,3(x′) < ν̄ < c2,3(x′). For any such pair, f(c1,3(x)) = f(c2,3(x′)) = 0,
and, hence, by Equations (3) and (4):

dPr(d = d1|x)

dx
= φf̂(ν)

dc1,2(x)

dx
and

dPr(d = d3|x′)
dx

= −φf̂(ν)
dc1,3(x′)

dx
.

The first equation identifies f̂(ν), while the ratio of the two equations identifies

φ. Third, whenever f̂(c1,3(x)) is known, f̂(c1,2(x)) is uniquely pinned down by

Equation (5). Because c1,2(x) < c1,3(x), ∀x, we can learn f̂(·) sequentially:

1) Take an x1 such that f̂(c1,3(x1)) is already known, learn f̂(c1,2(x1));

2) Take x2 such that c1,3(x2) = c1,2(x1), learn f̂(c1,2(x2));

3) Let x1 = x2. Repeat Step 2 until the entire support has been covered, i.e.,
c1,2(x2) ≤ 0.
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For this approach to work, c1,3(x) cannot “catch up” to c1,2(x) (i.e., as assumed,
c1,2(x) < c1,3(x) whenever c1,2(x) is on the support). This requires that DMs
with preference coefficients on the support are never indifferent between d1 and
two other alternatives – i.e. there are no three way ties involving d1. Fourth,
integration of f̂(ν) over the entire support recovers the scale and the true density.
Indeed, ∫ ν̄

0
f̂(ν)dν = O({d1, d2}; ∅)

∫ ν̄

0
f(ν)dν = O({d1, d2}; ∅)

pins down O({d1, d2}; ∅), and hence f(·) is identified. A generalization of this
strategy yields our first formal result.

Theorem 1. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1) The consideration mechanism is s.t. with positive probability d1 and d2 are
considered together;

2) Assumption I1 holds for X ⊂ S s.t. ∀x ∈ X

Uν(d1, x) > Uν(dj , x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1.

Then f(·) is identified and so are O(d1; ∅) and O({d1, d2}; ∅). For j > 2, if
Pr(d = dj |x) > 0 for some x, then O({d1, dj}; {d2, . . . , dj−1}) is identified.

The first assumption of the theorem ensures that a generalized version of Equa-
tion (5) is informative. The second assumption implies that the cutoffs for alterna-
tive d1 are ordered: c1,j(x) < c1,j+1(x). While Theorem 1 requires large support
for the excluded regressor, it does not generally require it to exhibit variation that
forces alternative d1 to go from being the first best to the least preferred. Rather,
the theorem requires that at one extreme of the support alternative d1 dominates
all others. However, at the other extreme we only require that d2 is preferred to
d1 for all DMs. Identification is attained for any consideration mechanism that
allows d1 and d2 to be considered together with positive probability. Moreover,
if the probability of being considered together is zero for d1 and d2, but positive
for d1 and d3, the theorem still holds as long as the assumptions of the theorem
hold for d3 instead of d2. Theorem 1 identifies some features of the consideration
mechanism. These features may be sufficient for identifying the entire mecha-
nism. In particular, as shown in Section II.E, Theorem 1 yields identification of
the ARC model, including the consideration mechanism.

Dependence between consideration and preferences.

We next generalize the example in Section II.A by allowing for high/low con-
sideration types.

Assumption I2.BCT (Binary Consideration Types). For some unknown ν∗ ∈
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(0, ν̄):

Qν(K) =

{
Q(K) if ν < ν∗

Q(K) if ν > ν∗

where, ∀ν and ∀K ⊂ D,
∑
K⊂DQν(K) = 1 and Qν(K) ≥ 0.

Theorem 2. Suppose Assumptions I0, I2.BCT, I3, T0-T2, and Condition 2 of
Theorem 1 hold. Suppose Condition 1 of Theorem 1 holds for all ν. Then f(·) is

identified and so is Oν({d1, d2}; ∅). Suppose dPr(d=d1|x)
dx is discontinuous. Then

ν∗ is identified. If, in addition, c1,j(x) < ν∗ for some x ∈ X and j > 2, then
Oν({d1, dj}; {d2, . . . , dj−1}) is also identified.

A discontinuity in dPr(d=d1|x)
dx may occur when a cutoff c1,j(x) crosses ν∗. In

some cases it may not happen despite binary consideration. For example, the
probability of considering d1 and d2 may jump but in a way that Oν({d1, d2}; ∅)
remains constant. In such a case, f(·) is identified but not necessarily the break-
point ν∗.

The theorem holds if Assumption I2.BCT is replaced with

Qx(K) =

{
Q(K) if x < x∗

Q(K) if x > x∗

for some unknown x∗ ∈ S. In sum, preferences can be identified even when there
are threshold effects affecting consideration. Assumption I2.BCT is one instance
where Assumption I2 does not hold but identification attains. Another instance,
which we establish for the ARC model in Section II.E, is proportionally shifting
consideration.

Identification without large support

Returning to our example with three alternatives, it is immediate to see that if
whenever d1 is considered so is d2, i.e. O({d1, d3}; d2) = 0, the one-to-one mapping
is restored. Indeed, the second term on the RHS of Equation (3) disappears and
we are back to Equation (1).

Proposition 1. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1) The consideration mechanism is such that d1 is considered with positive
probability and whenever it is considered so is d2;

2) There exists X ⊂ S such that c1,2(x), x ∈ X , covers [νl, νu] ⊂ [0, ν̄] and
∀x ∈ X

Uν(d1, x) > Uν(d2, x)⇒ Uν(d1, x) > Uν(dj , x), ∀j > 2.

Then F (ν|ν ∈ [νl, νu]) is identified.
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The proposition above uses (the derivative of) Pr(d = d1|x) to create the one-
to-one mapping from data to the preference density function. Depending on
the consideration mechanism, the same can be achieved using the derivative of
Pr(d ∈ {d1, d2, . . . , dj}|x).

Definition 4 (Loosely Ordered Consideration). The consideration mechanism is
loosely ordered around j, j < D, if whenever alternatives dk and dl, k ≤ j < l,
are both considered, so are dj and dj+1. In addition, dj and dj+1 have a positive
probability of being considered together.

Theorem 3. Suppose Assumptions I0, I2, I3, T0-T2 hold, and

1) The consideration mechanism is loosely ordered around j.

2) There exists X ⊂ S such that cj,j+1(x), x ∈ X , covers [νl, νu] ⊂ [0, ν̄] and
∀x ∈ X

Uν(dj , x) > Uν(dj+1, x)⇒ Uν(dj , x) > Uν(dk, x), ∀k > j + 1,

Uν(dj+1, x) > Uν(dj , x)⇒ Uν(dj+1, x) > Uν(dk, x), ∀k < j.

Then F (ν|ν ∈ [νl, νu]) is identified.

Condition 1 in Theorem 3 – a loosely ordered consideration mechanism – splits
the choice set into “low quality” and “high quality” sets. Any subset of the low
quality set can form the consideration set and so can any subset of the high
quality set. However, if a consideration set contains both high and low quality
alternatives, then it must also contain the “bridging” alternatives {dj , dj+1}. The
following mechanisms can generate loosely ordered consideration:

I. Bottom-Up consideration: Alternative dk is considered only if dk−1 is
considered;

II. Top-Down consideration: Alternative dk is considered only if dk+1 is
considered;

III. Center-to-edges consideration: Alternative dj , 1 < j < D, is always
considered. Alternative dk, k > j, is considered only if dk−1 is considered.
Alternative dk, k < j, is considered only if dk+1 is considered;

IV. Trimmed-from-the-edges consideration: Only consideration sets of the
form K = {dk, dk+1, . . . , dk+l} can occur with positive probability.

The identification result in Theorem 3 extends to mixtures of these mechanisms.
They cover a wide array of models including versions of threshold models (Kimya,
2018), (partial) elimination-by-aspects (Tversky, 1972), extremeness aversion (Si-
monson and Tversky, 1992), and edge aversion (Teigen, 1983; Christenfeld, 1995;
Rubinstein, Tversky and Heller, 1997; Attali and Bar-Hillel, 2003), as well as
models that embed budget or liquidity constraints.
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Condition 2 in Theorem 3 requires that whenever a DM prefers dj to dj+1, she
also prefers dj to all high quality alternatives; and whenever a DM prefers dj+1

to dj , she also prefers dj+1 to all low quality alternatives. This condition can
be tested in any given dataset and is automatically satisfied if no alternative is
never-the-first-best.

The fundamental difference between Theorems 1 and 3 is that the former im-
poses the large support requirement, while the latter does not. On the other
hand, Theorem 1 imposes less restrictions on the consideration mechanism than
Theorem 3.

C. Alternative-specific Excluded Regressors

With alternative-specific excluded regressors we can allow for consideration to
depend on preferences. To illustrate, we continue to assume that the choice set
is {d1, d2, d3}. However, now each alternative has its own regressor xj that only
affects the utility of alternative j: x = (x1, x2, x3). In addition, these regressors
vary independently of one another and each consideration set contains at least
two alternatives.

Identification is built on the following insight. Consider the change in the choice
frequency of alternative d1 in response to an incremental change in x2 (e.g., a price
increase for alternative d2). The DMs who may switch to d1 are those indifferent
between d1 and d2 and consider them both. If these DMs prefer d1 and d2 to
d3, whether d3 is considered is irrelevant; otherwise, for the response to occur, d3

should not be considered. These two cases translate to the following statements:
(i) c1,2(x) < c1,3(x) < c2,3(x); and (ii) c2,3(x) < c1,3(x) < c1,2(x) and d3 is not
considered. No other ordering of cutoffs can occur by Fact 4. With alternative
specific variation we can construct two vectors of regressors, xi and xii, such that
ν = c1,2(xi) < c1,3(xi) < c2,3(xi) and c2,3(xii) < c1,3(xii) < c1,2(xii) = ν.11 The
derivative of the choice frequency of d1 with respect to x2 for these cases are,
respectively:

(i)
∂ Pr(d = d1|x)

∂x2
=

[
Qν({d1, d2}) +Qν({d1, d2, d3})

]
f(ν)

∂c1,2(x)

∂x2
;

(ii)
∂ Pr(d = d1|x)

∂x2
=

[
Qν({d1, d2}) +Qν({d1, d2, d3})

]
f(ν)

∂c1,2(x)

∂x2
.

It follows that Qν({d1, d2})f(ν) and Qν({d1, d2, d3})f(ν) are identified. In a
similar fashion, Qν({d1, d3})f(ν) and Qν({d2, d3})f(ν) are identified. Hence, the
consideration probability of each non-singleton set is identified up to the same

11First, we can construct an x such that Uν(d1, x) = Uν(d2, x) = Uν(d3, x). To do so, we fix the
price of the first alternative, x1, and find a price for the second alternative that makes the DM with
preference parameter ν indifferent between d1 and d2. Since x3 does not affect the utility of d1 nor d2,
we can find an x3 so that the DM is indifferent between d3 and d1, and hence she is indifferent between
all three alternatives. The two cases are then constructed by taking a small perturbation of x3. Taken
in a direction that reduces Uν(d3, x) generates Case (i); and in the opposite direction Case (ii).
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scale. The scale, however, is identified because consideration probabilities must
sum to one: f(ν) =

∑
KQν(K)f(ν). Hence, Qν(K) is also identified for each K.

The following theorem generalizes this idea.

Definition 5 (Alternative-Specific Variation). We say that there is alternative-

specific variation if Uν(dj , x) depends only on xj:
∂Uν(dj ,x)

∂xk
6= 0⇔ k = j.

Theorem 4. Suppose Assumptions I0, I3, T0-T2 hold, there is alternative-specific
variation, and the choice set contains at least three alternatives. Suppose

1) Each consideration set contains at least two alternatives and Qν(·) is mea-
surable;

2) For a given value of ν, there exists an x with an open neighborhood around
it in S s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).

Then f(ν) is identified and so are Qν(K), ∀K ⊂ D.

The assumptions of the theorem above rule out singleton (and empty) con-
sideration sets: identification is impossible with singleton consideration sets and
arbitrary dependence on preferences, because any empirical choice frequency can
be explained by such consideration sets. An alternative approach is to have one
alternative – the “default” – that is always considered as the following corollary
demonstrates. The identification argument exploits the response of Pr(d = dj |x)
to changes in xk, but not the response of Pr(d = dk|x) to changes in xj . Hence,
D − 1 excluded regressors are sufficient for identification, allowing for arbitrary
dependence of consideration on one (the default’s) excluded regressor.

Corollary 1. Suppose Assumptions I0, T0-T2 hold, there is alternative-specific
variation, the choice set contains at least three alternatives, all consideration sets
contain d1, and

1) Consideration is independent of x−1 ≡ (x2, . . . , xD): Qxν(K) = Qx1
ν (K), and

Qx1
ν (·) are measurable functions, continuous in x1;

2) The consideration of K = {d1} is independent of ν: Qx1
ν (d1) = Qx1(d1) < 1,

∀ν;

3) For a given value of x1 and each value of ν ∈ [0, ν̄], there exists an x−1 and
an open neighborhood around x = (x1, x−1) in S s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).

Then f(ν) is identified and so are Qx1
ν (K), ∀K ⊂ D, for all ν on the support.
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Corollary 1 generalizes the model of Heiss et al. (2016); Ho, Hogan and Scott Mor-
ton (2017) in two dimensions. First, here each subset of the choice set containing
the default has its own probability of being drawn. Second, this probability can
vary with the DM’s preferences as well as with the excluded regressor of the
default alternative.

D. Testing for Limited Consideration

Since full consideration is a special case of limited consideration, it follows
from the identification results above that under the SCP one can test for full
consideration. The proposition below states one way of doing so without : (1)
relying on large support; (2) specifying a consideration mechanism; or (3) invoking
the independence assumptions I2 and I3.

Proposition 2. Suppose Assumptions I0, T0-T2 hold. Suppose there exist x, x′ ∈
S, and sets L,L′ ⊂ D s.t. for some ν∗ ∈ [0, ν̄]

1) arg maxj∈D Uν(dj , x) ∈ L, ∀ν ∈ [0, ν∗), and arg maxj∈D Uν(dj , x) ∈ D \ L,
∀ν ∈ (ν∗, ν̄]

2) arg maxj∈D Uν(dj , x
′) ∈ L′, ∀ν ∈ [0, ν∗), and arg maxj∈D Uν(dj , x

′) ∈ D\L′,
∀ν ∈ (ν∗, ν̄]

If Pr(d ∈ L|x) 6= Pr(d ∈ L′|x′), then there is limited consideration.

Condition 1 of the proposition requires that, given x, the first-best alternative
belongs to L for all DMs with ν < ν∗ and to D \ L for all DMs with ν > ν∗.
Condition 2 is the identical requirement, but given x′ and stated for L′. Under
these conditions and full consideration, the probability of choosing an alternative
in L or, respectively, L′ should be F (ν∗) in both cases. Thus, if Pr(d ∈ L|x) 6=
Pr(d ∈ L′|x′), then there is a limited consideration mechanism pushing DMs’
choices away from L and L′ at different rates.

E. The ARC Model

We now introduce a specific consideration mechanism, while maintaining the
preference structure, including the SCP, from Section I.B. We refer to this model
as the Alternative-specific Random Consideration (ARC) model (Manski, 1977;
Manzini and Mariotti, 2014). Each alternative dj appears in the consideration
set with probability ϕj independently of other alternatives. For now, we assume
that these probabilities do not depend on DMs’ preferences or the excluded re-
gressor. Once the consideration set is drawn, the DM chooses the best alternative
according to her preferences. To avoid empty consideration sets, following Manski
(1977), we assume that at least one alternative whose identity is unknown to the
researcher is always considered.12

12In the previous version of this paper (Barseghyan, Molinari and Thirkettle, 2019) this completion
rule is called Preferred Option(s). There we also provide identification results for other completion
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Assumption ARC (The Basic ARC Model). The probability that the consider-
ation set takes realization K is

Q(K) ≡
∏
k∈K

ϕk
∏

k∈D\K

(1− ϕk), ∀K ⊂ D,

where ϕj > 0, ∀j, and ∃d∗ s.t. ϕd∗ = 1.

By assuming ϕj > 0, we omit never-considered alternatives from the choice
problem. Since a never-considered alternative is never compared to any other
alternative, whether it is in the choice set or not does not affect the DM’s problem.
Hence, never-considered alternatives have no impact on what we can learn about
preferences.

Under the assumptions of Theorem 1, identification attains. Notably, each
consideration parameter ϕj is identified (as long as dj is chosen with positive
probability at some x).

Theorem 5. Suppose Assumptions I0, I2-I3, T0-T2, ARC hold, and Assumption
I1 holds for X ⊂ S s.t. ∀x ∈ X

Uν(d1, x) > Uν(dj , x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1.

Then f(·) is identified and so are ϕ1 and ϕ2. In addition, if Pr(d = dj |x) 6= 0 for
some x, then ϕj is identified.

Preference-Dependent Consideration

Returning to our example with three alternatives, recall that we have an ad-
ditional moment Pr(d = d3|x). The information it provides allows us to identify
some forms of dependence between consideration and preferences, i.e., to relax As-
sumption I2. To see how, suppose d2 is always considered. Then, with preference
dependence, the choice frequencies become:

Pr(d = d1|x) =

∫ c1,2(x)

0
ϕ1(ν)dF and Pr(d = d3|x) =

∫ ν̄

c2,3(x)
ϕ3(ν)dF.

The ratio of the derivatives of these two moments yields ϕ1(ν)
ϕ3(ν) . More assumptions

are required to obtain point identification of the ϕj(ν)’s. In Section II.B we
provided identification results for Binary Consideration Types. Here, leveraging
the additional structure provided by the ARC model, we can allow for more
flexible dependence between consideration and preferences. We do so through

rules, including Coin Toss (if the empty consideration set is drawn, the DM randomly uniformly picks
one alternative from the choice set, i.e. each alternative has probability 1/D of being chosen), Default
Option (there is a preset alternative that is chosen if the empty set is drawn), and Outside Option (the
DM exits the market if the empty set is drawn).
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a proportionally shifting consideration mechanism, formally defined below. This
mechanism may arise when there is a cost to evaluate each alternative. In such
a case, the DMs may consider alternatives that they ex-ante deem more aligned
with their preferences (e.g., the DM’s consideration shifts away from riskier to
safer alternatives as her risk aversion increases).

Assumption ARC.P (ARC with Proportional Consideration). The consider-
ation mechanism follows the ARC model with {D ≥ 4 & 1 ≤ d∗ ≤ D} or
{D = 3 & d∗ = 2}, and

ϕj(ν) =


ϕj(1− α(ν)) if j < d∗

1 if j = d∗

ϕj(1 + α(ν)) if j > d∗

s.t. α(·) is differentiable a.e., α′(·) 6= 0 a.e., α(ν̄) = 0, 0 < ϕj(ν) < 1, ∀j 6= d∗,
∀ν ∈ [0, ν̄].

In the case with three alternatives, ϕ1(ν)
ϕ3(ν) = ϕ1(1−α(ν))

ϕ3(1+α(ν)) . From this, ϕ1

ϕ3
is identified

when x and x′ are chosen such that c1,2(x) = c2,3(x′) = ν̄. Once ϕ1

ϕ3
is identified,

1−α(ν)
1+α(ν) is known for all ν; hence, α(ν) can be solved for. Identification of f(ν)

follows from substituting α(ν) into the expression for Pr(d=d1|x)
dx . The theorem

below generalizes this argument.

Definition 6. (No Three Way Ties) For a given x, there are no-three way ties if
@ν ∈ [0, ν̄] and {j, k, l} s.t. U(dj , x) = U(dk, x) = U(dl, x).

Theorem 6. Suppose Assumptions I0, I3, T0-T2, ARC.P hold, and Assumption
I1 holds for X s.t. ∀x ∈ X there are no three-way ties and

Uν(d1, x) > Uν(dj , x)⇒ Uν(d1, x) > Uν(dj+1, x), ∀j > 1,

Uν(dD, x) > Uν(dj , x)⇒ Uν(dD, x) > Uν(dj−1, x), ∀j < D,

and ∃x ∈ X s.t. cj,k(x) ≤ 0, ∀j, k, j < k. Then f(·) and {ϕj(·)}Dj=1 are identified.

The conditions of the theorem are stronger than in Theorem 5, as they impose
relative order of the cutoffs not only for alternative d1 but also for dD. In many
cases, the relative order of c1,j(x)’s alone is sufficient, for example when d1 is
always considered.

Identification with Alternative-specific Excluded Regressors

By leveraging features of the ARC model, the identification results in Section
II.C can be extended to the case where the consideration of dj is a function
both of xj and preferences. This differs from Corollary 1, which restricted the
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consideration of alternative dj to depend only on the default alternative’s excluded
regressor. We continue to assume that the choice set is {d1, d2, d3} and that
d2 is always considered. Let the consideration of dj be a measurable function
of xj and ν, continuous in its first argument: ϕj = ϕj(xj , ν). Similar to the
example in Section II.C, we construct two vectors, xi and xii, such that: (i)
ν = c1,2(xi) < c1,3(xi) < c2,3(xi); and (ii) c2,3(xii) < c1,3(xii) < c1,2(xii) = ν.
The derivative of the choice frequency of d1 with respect to x2 for these cases are,
respectively:

i(i)
∂ Pr(d = d1|x)

∂x2
= (1− ϕ3(x3, ν))ϕ1(x1, ν)f(ν)

∂c1,2(x)

∂x2
;(6)

(ii)
∂ Pr(d = d1|x)

∂x2
= (1− ϕ3(x3, ν))ϕ1(x1, ν)f(ν)

∂c1,2(x)

∂x2
.

The ratio of the expressions in Equation (6) identifies ϕ3(x3, ν). Using a similar
logic, we can identify ϕ1(x1, ν). Plugging these consideration probabilities into
Equation (6) identifies f(ν). In sum, alternative-specific variation yields identifi-
cation without large support and without the independence Assumptions I2 and
I3. It is also possible to allow consideration of d1 (and d3) to depend on x1, ν, as
well as x3. The key exclusion restriction in this case is that the consideration of
d2 is independent of all components of x. Our last identification result generalizes
this example.

Assumption ARC.AS. The consideration mechanism follows the ARC model.
The consideration probability of each alternative dj is a measurable function of
xj and preferences: ϕj = ϕj(xj , ν), continuous in the first argument. Default
alternative d∗ is s.t. ϕd∗(xd∗ , ν) = 1 for all xd∗ ∈ S and for all ν ∈ [0, ν̄].

Theorem 7. Suppose Assumptions I0, T0-T2, ARC.AS hold. Suppose there is
alternative-specific variation and the choice sets contain at least three alternatives.
Suppose for a given value of ν there exists an x = (x1, x2, . . . , xD), and an open
neighborhood around it in S, s.t.

Uν(d1, x) = Uν(d2, x) = · · · = Uν(dD, x).

Then f(ν) and {ϕj(xj , ν)}Dj=1 are identified.

Existing identification results that rely on alternate-specific variation (Goeree,
2008; Abaluck and Adams, 2020; Kawaguchi, Uetake and Watanabe, 2020) allow
for consideration dependence on its own regressor, but not preferences. Theorem 7
states identification for a general version of the ARC model where the alternative-
specific consideration probability can depend on both its own regressor and DMs’
preferences.
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III. Likelihood and Tractability

We now turn to the computational aspects of limited consideration models
under the SCP and, in particular, of their likelihood function. Consider a generic
consideration mechanism.

A computationally appealing way to write the likelihood function is to deter-
mine the probability that a DM with preference parameter ν chooses alternative
dj conditional on x. Alternative dj is chosen if and only if dj is in the consider-
ation set and every alternative that is preferred to dj is not. Denote the set of
alternatives that are preferred to dj by

Bν(dj , x) ≡ {k : Uν(dk, x) > Uν(dj , x)}.

Then,

Pr(dj |x) =

∫
Pr(dj |x, ν)dF =

∫
Oxν (dj ;Bν(dj , x))dF.(7)

The object on the RHS does not require evaluating the utility of each alternative
within each possible consideration set. In fact, Uν(dj , x) needs to be computed
only once for each ν, dj , and x to create Bν(dj , x), which does not vary with the
consideration set. Hence the computational complexity lies in the mapping from
Oxν (·) to the parameters governing the consideration mechanism. This, however,
may not even require enumerating all possible consideration sets. To demonstrate
this with a concrete example, we proceed with the basic ARC model. In this case,
the RHS of Equation (7) is:

I(dj |x) ≡ ϕj
∫ ∏

k∈Bν(dj ,x)

(1− ϕk)dF.(8)

Given {ϕj}Dj=1, the integrand
∏
k∈Bν(dj ,x)(1−ϕk) is piecewise constant in ν with at

most D−1 breakpoints, corresponding to indifference points between alternatives
j and k, i.e., cj,k(x), that are computed only once for each observed x. There are
at least two methods to compute this integral. First, for every dj and x, we can
directly compute the breakpoints and hence write I(dj |x) as a weighted sum:

I(dj |x) = ϕj

D−1∑
h=0

(F (νh+1)− F (νh))
∏

k∈Bνh (dj ,x)

(1− ϕk)

 ,

where νh’s are the sequentially ordered breakpoints augmented by the integration
endpoints: ν0 = 0 and νD = ν̄. This expression is trivial to evaluate given F (·)
and breakpoints {νh}Dh=0. More importantly, since the breakpoints are invariant
with respect to the consideration probabilities, they are computed only once for
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each x. This simplifies the likelihood maximization routine by orders of mag-
nitude, as each evaluation of the objective function involves a summation over
products with at most D terms. A second approach is to compute I(dj |x) using
Riemann approximation:

I(dj |x) ≈ ϕj
ν̄

M

M∑
m=1

f(νm)
∏

k∈Bνm (dj ,x)

(1− ϕk)

 ,

where M is the number of intervals in the approximating sum, ν̄
M is the intervals’

length, νm’s are the intervals’ midpoints, and f(·) is the density of F (·). Again,
one does not need to evaluate the utility from different alternatives in the likeli-
hood maximization. Instead, one a priori computes the utility rankings for each
νm, m = 1, . . . ,M . These rankings determine Bνm(dj , x). The likelihood max-
imization is now a standard search routine over {ϕj}Dj=1 and f(·). Our theory
restricts f(·) to the class of continuous and strictly positive functions. In practice,
the search is over a class of non-parametric estimators for f(·).13 If the density
is parameterized, i.e., f(νm) ≡ f(νm; θf ), then the maximization is over {ϕj}Dj=1

and θf . Finally, the interval midpoints are the same across all DMs as they do
not depend on x, further reducing computational burden.14

Allowing consideration to depend on preferences (or on x) introduces only min-
imal adjustments to the likelihood function. For example, let each consideration
function be parameterized by θj : ϕj(ν) ≡ ϕj(ν; θj). Then, at each ν, we can
substitute ϕj with the corresponding ϕj(ν; θj), and the likelihood maximization
is now over {θj}Dj=1 and θf . Given the desired level of parameterization – i.e., the

dimensionality of the parameter vectors θj and θf – the computational complexity
of the problem grows polynomially in D.

As a final remark, if alternative dj is never chosen, then one can conduct estima-
tion as if dj were not in the choice set. Indeed, per Equation (8), ϕj contributes
positively to the likelihood if and only if alternative dj is chosen. When it is
never chosen, it may only enter via the term (1 − ϕj); hence, the likelihood will
be maximized by setting ϕj = 0. Therefore, setting ϕj = 0 for all zero-share al-
ternatives, regardless of why they were not chosen, has no impact on estimation.
This too may speed up estimation.

IV. Limited Consideration and RUM: A Comparison

We focus on a standard application of the RUM with full consideration in the
context of our example in Section I.A. The final evaluation of the utility that the

13One could use a mixture of Beta distributions (Ghosal, 2001), as we do in Section V.
14Depending on the class of f(·), it may be more accurate to compute I(dj |x) by substituting ν̄

M
f(νm)

with F (νm)− F (νm), where νm and νm are the endpoints of the corresponding interval.
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DM derives from alternative j now includes an additively separable error term:

Vν(Lj(x)) = Uν(Lj(x)) + εj ,(9)

where, as before, ν captures unobserved heterogeneity in preferences, and εj is
assumed independent of the random coefficients (in this application, ν).

Typical implementations of this model further specify that εj is i.i.d. across
alternatives (and DMs) with a Type 1 Extreme Value distribution, following the
seminal work of McFadden (1974). This yields a Mixed Logit that is distinct from
the commonly used one in McFadden and Train (2000). In their model, random
coefficient(s) enter the utility function linearly, while in the context of expected
utility they enter nonlinearly. We now discuss two properties of the Mixed Logit
that hinder its applicability in our context.

A. Monotonicity

Coupling utility functions in the hyperbolic absolute risk aversion (HARA)
family, for example CARA or CRRA, with a Type 1 Extreme Value distributed
additive error yields:

Proposition 3. (Non-monotonicity in RUM, Apesteguia and Ballester, 2018;
Wilcox, 2008) In Model (9) with HARA preferences and εj i.i.d. Type 1 Extreme
Value, as the DM’s risk aversion increases, the probability that she chooses a
riskier alternative declines at first but eventually starts to increase.

To see why, consider two non-dominated alternatives dj and dk such that dj is
riskier than dk. A risk neutral DM prefers dj to dk, and hence will choose the
former with higher probability. As risk aversion increases, the DM eventually
becomes indifferent between dj and dk and chooses either of these alternatives
with equal probability. As risk aversion increases further, she prefers dk to dj
and chooses the latter with lower probability. However, as risk aversion gets
even larger, the expected utility under HARA of any lottery with finite stakes
converges to zero. Consequently, the choice probabilities of all alternatives, re-
gardless of their riskiness, converge to a common value.15 Hence, at some point
the probability of choosing dj is increasing in risk aversion.

To the contrary, our model with a limited consideration mechanism that is
independent of preferences yields choice probabilities that are monotone in the
preference parameter.

Property 1 (Generalized Preference Monotonicity). A model satisfies generalized

15Recall that in the Mixed Logit the magnitude of the utility differences is tied to differences in (log)
choice probabilities, Uν(Lk(x)) − Uν(Lj(x)) = log(Pr(d = dk|x, ν)) − log(Pr(d = dj |x, ν)), so that as
ν →∞ the choice probabilities are predicted to be all equal.
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preference monotonicity if for any ν1 < ν2 and J ∈ D:

Pr

 J⋃
j=1

dj

∣∣∣∣x, ν1

 ≥ Pr

 J⋃
j=1

dj

∣∣∣∣x, ν2

 .

In the context of risk preferences, Property 1 states that the probability of
choosing one of the J riskiest alternatives declines as ν increases. Since Property
1 is satisfied for any choice set under the SCP and full consideration, it is also
satisfied under limited consideration:

Proposition 4. A model that satisfies the SCP (i.e., Assumption T2) and As-
sumption I2 satisfies Generalized Preference Monotonicity.

B. Generalized Dominance

Next, we establish the relation between utility differences across two alternatives
and their respective choice probabilities. Because our random expected utility
model features unobserved preference heterogeneity, we work with an analog of
the rank order property in Manski (1975) that is conditional on ν:

Definition 7. (Conditional Rank Order of Choice Probabilities) The model yields
conditional rank order of the choice probabilities if for given ν and alternatives
j, k ∈ D,

Uν(Lj(x)) > Uν(Lk(x))⇒ Pr(d = dj |x, ν) > Pr(d = dk|x, ν).

We show that the conditional rank order property implies the following upper
bound on the probability that suboptimal alternatives are chosen.

Property 2. (Generalized Dominance) A model satisfies Generalized Dominance
if for any x, dj, and set K ⊂ D \ {dj} s.t. alternative dj is never-the-first-best in
K ∪ {dj}

Pr(d = dj |x) <
∑
k∈K

Pr(d = dk|x).

Generalized Dominance holds in the Mixed Logit model and, more broadly, in
models that satisfy the conditional rank order property. However, it may not hold
in some limited consideration models. For example, Generalized Dominance is
violated if dj is never-the-first best among {dj , dk, dl}, is almost always considered,
and alternatives dk and dl are rarely considered.

C. Limited Consideration as Ordinal RUM

In the Mixed Logit, the cardinality of the differences in the (random) expected
utility of alternatives plays a crucial role in the determination of choice probabili-
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ties, as it interacts with the realization of the additive error. In contrast, in models
that satisfy the SCP, the DMs’ choices are determined by the ordinal expected
utility ranking of the alternatives. Hence, limited consideration models can be
recast as Ordinal Random Utility models (ORUM), where the key departure from
standard RUMs is the distribution of the additive error term.

Proposition 5. (Limited Consideration as ORUM) A Limited Consideration
Model is equivalent to an additive error random utility model with unobserved
preference heterogeneity where all alternatives are considered, the DM’s utility of
each alternative dj ∈ D is given by

Vν(dj , x) = Uν(dj , x) + εj(ν, x),

and ~ε(ν, x) = {εj(ν, x)}Dj=1 is distributed on {−∞, 0}D according to Pr (~ε(ν, x)) =
Qxν(K) for K s.t. dj ∈ K if εj(ν, x) = 0 and dk ∈ D \ K if εj(ν, x) = −∞.

Casting our limited consideration model as an ORUM clearly demonstrates its
flexibility. In particular, our results show how to obtain identification when the
errors are correlated with the excluded regressors, the preference parameter, and
across alternatives.

Table 2—Model Comparisons

Error Structure Mixed Logit Basic ARC Binary Types Prop. Shifting Generic Consideration

Support R {−∞, 0} {−∞, 0} {−∞, 0} {−∞, 0}

Indep. of x Yes Yes Yes1 Yes No

Indep. of ν Yes Yes No1 No No

Indep. across alternatives Yes Yes Yes Yes No

Iden. across alternatives Yes No No No No

Note: Binary Types can also be dependent on x but would require independence with ν in that case.

We conclude this section with Table 2, listing the differences across the Mixed
Logit and limited consideration models. The first two columns summarize the
differences between the basic ARC model and the Mixed Logit. The third col-
umn and fourth column remind the reader our two models with consideration
depending on preferences. Finally, the last column highlights the fact that with
alternative-specific variation we may also have dependence of the error term on
the excluded regressor(s) as well as on the preference parameter.

V. Application

We offer an empirical analysis of households’ decisions under risk. This analysis
aims to illustrate how our method works and its ability to fit the data.



VOL. VOL NO. ISSUE DISCRETE CHOICE UNDER LIMITED CONSIDERATION 27

A. Data

We study households’ deductible choices across three lines of property insur-
ance: auto collision, auto comprehensive, and home all perils. The data come
from a U.S. insurance company (Anonymous Firm, 2018). Our analysis uses a
sample of 7,736 households who purchased their auto and home policies for the
first time between 2003 and 2007 and within six months of each other.16 Online
Table D.1 provides descriptive statistics for households’ observable characteris-
tics, which we use later to estimate households’ preferences.17 We observe the
exact menu of alternatives available at the time of the purchase for each house-
hold and each line of coverage. The deductible alternatives vary across lines of
coverage but not across households. Online Table D.2 presents the frequency of
chosen deductibles in our data.

Table 3—Premium Quantiles for the $500 Deductible

Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99

Collision 53 74 117 162 227 383 565

Comprehensive 29 41 69 99 141 242 427

Home 211 305 420 540 743 1,449 2,524

Premiums are set coverage-by-coverage as in the example from Section I.A.
Online Table D.4 reports the average premium by context and deductible, and
Table 3 summarizes the premium distributions for the $500 deductible. Premiums
vary dramatically. The 99th percentile of the $500 deductible is more than ten
times the corresponding 1st percentile in each line of coverage.

Claim probabilities stem from (Barseghyan, Teitelbaum and Xu, 2018), who de-
rived them using coverage-by-coverage Poisson-Gamma Bayesian credibility mod-
els applied to a large auxiliary panel. Predicted claim probabilities (summarized
in Table 4) exhibit extreme variation: The 99th percentile claim probability in
collision (comprehensive and home) is 4.3 (12 and 7.6) times higher than the
corresponding 1st percentile. Finally, the correlation between claim probabilities
and premiums for the $500 deductible is 0.38 for collision, 0.15 for comprehensive,
and 0.11 for home all perils. Hence, there is independent variation in both.

16The dataset is an updated version of the one used in Barseghyan et al. (2013). It contains information
for an additional year of data and puts stricter restrictions on the timing of purchases across different
lines. These restrictions are meant to minimize potential biases stemming from non-active choices, such
as policy renewals, and temporal changes in socioeconomic conditions.

17These are the same variables that are used in Barseghyan et al. (2013) to control for households’
characteristics. See discussion there for additional details.
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Table 4—Claim Probabilities Across Contexts

Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99

Collision 0.036 0.045 0.062 0.077 0.096 0.128 0.156

Comprehensive 0.005 0.008 0.014 0.021 0.030 0.045 0.062

Home 0.024 0.032 0.048 0.064 0.084 0.130 0.183

B. Estimation Results

The Basic ARC Model: Collision

We start by presenting estimation results in a simple setting where the only
choice is the collision deductible and observable demographics do not affect pref-
erences. To execute our estimation procedure we set ν̄ = 0.02, which is con-
servative (see Barseghyan, Molinari and Teitelbaum, 2016). We ex post verify
that this does not affect our estimation by checking that the density of the es-
timated distribution is close to zero at the upper bound. We approximate F (·)
non-parametrically through a mixture of Beta distributions. In practice, how-
ever, both AIC/BIC criteria indicate that a single component is sufficient for our
analysis, resulting in a total of seven parameters to be estimated. We let the data
speak to the identity of the always-considered alternative.18

The estimated distribution and consideration parameters are reported in Online
Table E.1. As the first panel in Figure 1 shows, the model closely matches the
aggregate moments observed in the data. The second panel in Figure 1 illustrates
side-by-side the frequency of predicted choices, consideration probabilities, and
the distribution of households’ first-best alternatives (i.e., the distribution of op-
timal choices under full consideration). Predicted choices are determined jointly
by the preference induced ranking of deductibles and by the consideration prob-
abilities: Limited consideration forces households’ decision towards less desirable
outcomes by stochastically eliminating better alternatives. The two highest de-
ductibles ($1000 and $500) are considered at much higher frequency (1.00 and
0.92, respectively) than the other alternatives, suggesting that households have a
tendency to regularly pay attention to the cheaper items in the choice set. Yet,
the most frequent model-implied optimal choice under full consideration is the
$250 deductible, which is considered with low probability. In this application, as-
suming full consideration leads to a significant downward bias in the estimation of
the underlying risk preferences. To see why, consider increasing the consideration
probabilities for the lower deductibles to the same levels as the $500 deductible.
Holding risk preferences fixed, the likelihood that the lower deductibles are chosen

18In fact, the estimation is run under the Coin Toss completion rule that nests the possibility that
any alternative can be always considered. The data chooses ϕ1000 = 1.
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Figure 1. The ARC Model

Note: The first panel reports the distribution of predicted and observed choices. The second panel
displays consideration probabilities and the distribution of optimal choices under full consideration.

increases and therefore the higher deductibles are chosen with lower probability.
Average risk aversion must decline to compensate for this shift. This is exactly
the pattern we find when we estimate a near-full consideration model. In partic-
ular, we find that average risk aversion decreases by about 32% from 0.0037 to
0.0025 when all consideration parameters equal 0.9999.19 To put these numbers
into context, a DM with risk aversion equal to 0.0037 is willing to pay $431 to
avoid a $1000 loss with probability 0.1, while a DM with risk aversion equal to
0.0025 is only willing to pay $300 to avoid the loss.

The basic ARC model’s ability to match the data extends also to conditional
moments. The first two panels of Figure 2 show observed and predicted choices
for the fraction of households facing low and high premiums, respectively, and
the next two panels are for households facing low and high claim probabilities.20

Finally, the last two panels display households who face both low claim probabili-
ties and high prices and vice versa. It is transparent from Figure 2 that the model
matches closely the observed frequency of choices across different subgroups of
households facing a variety of prices and claim probabilities, even though some
of these frequencies are quite different from the aggregate ones.

The ARC model’s ability to violate Generalized Dominance is key in matching
the data. In our dataset, because of the pricing schedule in collision, the $200
is never-the-first best among {$100, $200, $250} for 99.84% of all households and
100% of households who have chosen the $200 deductible. It costs the same

19We cannot assume that all consideration probabilities are equal to one, since the $200 deductible is
never-the-first-best under full consideration and is chosen with positive probability.

20Low and high groups here are defined as households whose claim rate (or baseline price) are in the
first and third terciles, respectively.
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Figure 2. The ARC Model: Conditional Distributions

to get an additional $50 of coverage by lowering the deductible from $250 to
$200 as it does to get an additional $100 of coverage by lowering the deductible
from $200 to $100. If a household’s risk aversion is sufficiently small, then it
prefers the $250 deductible to the $200 deductible. If, on the other hand, the
household’s level of risk aversion is such that it would prefer the $200 deductible
to the $250 deductible, then it would also prefer getting twice the coverage for
the same increase in the premium. That is, for any level of risk aversion, the $200
deductible is dominated either by the $100 deductible or by the $250 deductible.21

Yet, overall the $200 deductible is chosen roughly as often as the $100 and $250
deductibles combined. More so, for certain sub-groups the $200 deductible is
chosen much more often than the $100 and $250 deductible combined. It follows
that a model satisfying Generalized Dominance cannot rationalize these choices.

Next we relax the assumption that demographic variables, Z, do not influ-
ence risk preferences. In particular, conditional on demographics, preferences are

distributed Beta(β1(Z), β2), where log β1(Z)
β2

= Zγ, yielding a conditional mean

preference value E(ν|Z) = eZγ

1+eZγ
ν̄. The details of this step and the results are

reported in Online Appendix E.1. Both consideration and preference estimates
remain close to those reported above.

Proportionally Shifting Consideration

We estimate the model with proportionally shifting consideration where the
preference distribution and function α(ν) may depend on demographic variables
(Online Table E.2). Motivated by the findings of the previous section, we assume

21This pattern is at odds not only with EUT but also many non-EU models (Barseghyan, Molinari
and Teitelbaum, 2016).
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that the cheapest/riskiest alternative is always considered. The consideration
probability of the remaining alternatives is equal to ϕj(x, ν) = ϕj(1 − α(ν|Z)),

where α(ν|Z) = ξ1(Z)
(
1− ν

ν̄

)ξ2 , ξ1(Z) = eZρ

1+eZρ
, and ξ2 is positive. We continue

to assume that preferences are distributed Beta(β1(Z), β2).

The estimated average value of ξ1(Z) is 0.15, with the 95% CI of [0.02, 0.21].
When ξ1(Z) = 0.15, a risk-neutral DM considers each of the safer alternatives
{$100, $200, $250, $500} 15% less often than does an extremely risk averse DM.
The estimated value of ξ2 is 7.14. This implies that as the risk aversion parameter
increases from 0 to its estimated average median value of 0.0035, consideration
probability of the safer alternatives increases by 11%, and it is essentially flat
after that rising by an additional 4% as risk aversion reaches its upper bound.

The Mixed Logit Random Utility Model

As in the case of the ARC model, we assume that ν is Beta distributed on
[0, ν̄], where ν̄ = 0.02. The Mixed Logit satisfies the Generalized Dominance and
smoothly spreads households’ choices around their respective first bests. Conse-
quently, it cannot match the observed distribution and, in particular, is unable to
explain the relatively high observed share of the $200 deductible. Online Table
E.3 reports the estimation results and Online Figure E.3 compares the observed
distribution of choices to the predicted choices. The predicted distribution is a
much poorer fit relative to the ARC model. In fact, the Vuong (1989) test soundly
rejects (at 1% level) the Mixed Logit in favor of the ARC model.

The ARC Model: All Coverages

We now proceed with estimation of the full model. We assume that households’
consideration sets are formed over the entire deductible portfolio. There are 120
possible alternative triplets (dcoll, dcomp, dhome), each having its own probability of
being considered. This model is flexible as it nests many rule of thumb assump-
tions such as only considering contracts with the same deductible level across
the three contexts or only considering contracts with a larger collision deductible
than comprehensive deductible. Figure 3 and Online Table E.4 present estimation
results. The first panel of the figure shows the predicted distribution of choices
across triplets, ranked in descending order by observed frequencies. The second
panel plots the differences between predicted and observed choice distributions.
Clearly, the predicted distribution is close to the observed distribution.

The largest difference between the predicted and observed shares equals 0.38
percentage points, which is for the ($250, $250, $500) triplet that is chosen by
2.9% of the households. The integrated absolute error across all triplets is 3.46%.
In our data, 43 out of 120 triplets are never chosen (these are omitted from
Figure 3). As discussed in Section III, the likelihood maximization implies that
the consideration probabilities for these triplets must be zero, so their predicted
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Figure 3. The ARC Model, Three Coverages

Note: Triplets are sorted by observed frequency at which they are chosen. The first panel reports the
predicted choice frequency and the second panel reports the difference in predicted and observed choice
frequencies. The scale of the second panel is magnified by a factor of 30 to make the probability difference
visible.

shares are zero. Hence, the likelihood maximization routine is faster and more
reliable as we do not need to search for ϕj for these alternatives.

Another virtue of the ARC model is that it effortlessly reconciles two sides of
the debate on stability of risk preferences (Barseghyan, Prince and Teitelbaum,
2011; Einav et al., 2012; Barseghyan, Molinari and Teitelbaum, 2016). On the
one hand, households’ risk aversion relative to their peers is correlated across lines
of coverage, implying that households preferences have a stable component. On
the other hand, analyses based on revealed preference reject the standard models:
under full consideration, for the vast majority of households one cannot find a
level of (household-specific) risk aversion that justifies their choices simultaneously
across all contexts. Limited consideration allows the model to match the observed
joint distribution of choices, and hence their rank correlations.

The estimated risk preferences are similar to those estimated with collision
only data, although the variance is slightly smaller. The triplet considered most
frequently is the cheapest one: ($1000, $1000, $1000). Its consideration probabil-
ity is 0.76, while the next two most considered triplets are ($500, $500, $1000)
and ($500, $500, $500). These are considered with probability 0.47 and 0.43,
respectively. Overall, there is a strong positive correlation (0.53) between the
consideration probability and the sum of the deductibles in a given alternative.

We summarize once more the computational advantages of our procedure. First,
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estimation of our model remains feasible for a large choice set.22 Second, the
model’s parameters grow linearly with the size of the choice set – one parameter
per an additional alternative. Third, enlarging the choice set does not call for
new independent sources of data variation. For example, in our model whether
there are five or one hundred twenty deductible alternatives does not make any
difference either from an identification or an estimation stand point: with suffi-
cient variation in p̄ and/or µ, the model is identified and can be estimated. As a
final remark, once the model is estimated, one can compute the average monetary
cost of limited consideration. In our data it is $50 (see Online Appendix C).

VI. Discussion

The literature concerned with the formulation, identification, and estimation of
discrete choice models with limited consideration is vast. However, to our knowl-
edge, there is no previous work applying such models to the study of decision
making under risk, except for the contemporaneous work of Barseghyan et al.
(2019). In particular, this paper is the first to exploit the SCP for identification
purposes. As a result, several fundamental differences emerge between our work
and existing papers. First, we achieve identification in the most challenging case
where there is a single excluded regressor that affects the utility of all alterna-
tives.23 Second, we allow for consideration to depend on preferences. Third,
with alternative-specific excluded regressors, this dependence can be essentially
unrestricted and can be combined with dependence of consideration on (some
of) the excluded regressors. Fourth, we scrutinize the large support assumption,
show why it may be necessary, and when and how it is possible to make progress
when it is not satisfied. Fifth, our approach comes with an easy to implement
and computationally fast estimation strategy. Finally, we make a contribution
specific to the study of decision making under risk by proposing a model that is
immune from Apesteguia and Ballester (2018) criticism and features two sources
of unobserved heterogeneity – risk aversion and limited consideration – whose
distributions are identified. More generally, the paper establishes that, as long as
the DMs’ preferences satisfy the SCP, allowing for limited consideration does not
hinder the model’s identifiability or applicability. Hence, we view our framework
as a stepping stone for studies of consumer behavior in markets where limited
consideration may be present (one example is Coughlin, 2020, who builds on our
framework to study consumer choice in Medicare Part D markets).

Papers that allow for limited consideration or more broadly for choice set het-
erogeneity can be classified in four groups. The first relies on auxiliary informa-

22In our setting, it is feasible to estimate an additive error RUM assuming the DMs consider each
deductible triplet as a separate alternative (Online Figure E.4 and Online Table E.5). As the figure
shows, the failure to match the data is evident. The Vuong test formally rejects it in favor of the ARC
model.

23This setting is common in insurance markets, see, e.g.,Cohen and Einav (2007); Einav et al. (2012);
Sydnor (2010); Barseghyan, Prince and Teitelbaum (2011); Barseghyan et al. (2013); Handel (2013);
Bhargava, Loewenstein and Sydnor (2017).
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tion about the composition or distribution of DMs’ choice sets, such as brand
awareness (e.g., Draganska and Klapper, 2011; Honka and Chintagunta, 2017) or
search activity (e.g., Honka and Chintagunta, 2017; De los Santos, Hortaçsu and
Wildenbeest, 2012; Kim, Albuquerque and Bronnenberg, 2010; Honka, Hortaçsu
and Vitorino, 2017).24 We do not require such information.

The second group attains identification via two-way exclusion restrictions, i.e.,
by assuming that some variables impact consideration but not utility and vice
versa. A well-known example of this approach is Goeree (2008), who posits that
advertising intensity affects the likelihood of considering a computer, but does not
impact consumer preferences, while computer attributes such as CPU speed affect
preferences but not consideration (see also van Nierop et al. (2010) and Gaynor,
Propper and Seiler (2016)). Hortaçsu, Madanizadeh and Puller (2017) create an
exclusion restriction by exploiting the dynamic aspect of consumer choice.25 The
consumer’s decision to consider alternatives to her current service provider is a
function of (her experiences with) the last period provider but not her next period
provider (see also Heiss et al. (2016)). In contrast, we achieve identification with
as little as one common excluded regressor and a single cross section.

The third group relies on restricting the consideration mechanism to a specific
class of models. Abaluck and Adams (2020) consider two such models (and their
hybrid): a variant of the ARC and a “default specific” model (as in, e.g., Ho,
Hogan and Scott Morton, 2017; Heiss et al., 2016) in which each DM’s consid-
eration set comprises either a single default alternative or the entire feasible set.
They assume that consideration and preferences are independent, and that each
alternative has a characteristic with large support that is additively separable
in utility and may only affect its own consideration but not the consideration of
other alternatives.26 They exploit violations of symmetry in the Slutsky matrix
(i.e., in cross-alternative demand responses to prices) to detect limited consider-
ation. Kawaguchi, Uetake and Watanabe (2020) study beverage purchases from
vending machines, allowing advertisement to be a driver of consideration, but
also to affect utility. Their approach is close to that of Goeree (2008), though
they provide a formal argument for identification with large support and exclu-
sion restrictions even when there is no choice set variation. A key assumption is
that all beverages are considered with probability equal to one as the advertising
intensity of each beverage becomes very large.

The methods we propose relate to the papers in the third group in two aspects.
First, we too sometimes require large support as a “fail safe” assumption, but only

24For canonical cites see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).
25Time variation is used also in Crawford, Griffith and Iaria (2020), who show that with panel data

and preferences in the logit family, point identification of preferences is possible, without any exclu-
sion restrictions, under the assumption that choice sets and preferences are independent conditional on
observables and with restrictions on how choice sets evolve over time. These restrictions enable the
construction of proper subsets of DMs’ true choice sets (‘sufficient sets’) that can be utilized to estimate
the preference model.

26The exception is the “default” alternative, whose characteristic may trigger the consideration of the
entire choice set.
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in the most challenging case of a single common excluded regressor. Second, we
too rely on exclusion restrictions. The reliance on these assumptions is inescapable
given the econometrics literature on point identification of discrete choice models.
Our approach elucidates the identifying power of a single excluded regressor in
models that satisfy the SCP and, in particular, the relative ranking of alternatives
encapsulated in Facts 3 and 4 (see Lewbel and Yang, 2016, for related results for
average treatment effects in ordered discrete choice models). We further exploit
this structure to establish identification in models with substantially richer levels
of unobserved heterogeneity, by allowing for dependence between consideration
and preferences.

The fourth group of papers has a different goal than what we pursue here, as
it provides partial rather than point identification results. Cattaneo et al. (2020)
propose a random attention model with homogeneous preferences, and they re-
quire that the probability of each consideration set is monotone in the number
of alternatives in the choice problem. Their analysis yields testable implications
and partial identification for preference orderings. Barseghyan et al. (2019) study
discrete choice models, where consideration may arbitrarily depend on preferences
as well as on all observed characteristics. They show that such unrestricted forms
of heterogeneity generally yield partial, but not point, identification of the pref-
erence distribution and obtain bounds on the distribution of consideration sets’
size. Finally, Dardanoni et al. (2020) consider a stochastic choice model with
homogeneous preferences and heterogeneous cognitive types. They show how one
can learn the moments of the distribution of cognitive types from a single cross
section of aggregate choice shares.
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