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S1 Theory

S1.1 Unobserved Heterogeneity in Choice Sets as Additively
Separable Disturbances

It is possible to represent unobserved heterogeneity in choice sets through additively sepa-

rable disturbances. In a classic random utility model with Uipcq � Wipcq � εic, one may let

εic P t�8, 0u for each alternative c P D and allow εic to be correlated with εic1 for any two

alternatives c, c1 P D. One would then posit that: if κ � |D| then εic � 0 for each alternative

c P D; if κ � |D| � 1 then εic � �8 for at most one alternative in D (the identity of which

is left unspecified); if κ � |D| � 2 then εic � �8 for at most two alternatives in D (the

identities of which are left unspecified); and so forth. This model yields that alternative c is

not chosen if εic � �8, which is analogous to alternative c not being chosen when it is not

contained in the agent’s choice set.

S1.2 Positive Probability of Utility Ties

When utility ties are allowed, one can adapt the definition of D�
κpxi,νi; δq as follows:

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
arg max

cPG
W pxic,νi; δq

)
�

¤
G�D:|G|�κ

!
arg max

cPG
W pxic,νi; δq

)
,

(S1.1)

where again the last equality follows from Sen’s property α, and now arg maxcPGW pxic,νi; δq
may include multiple elements of D due to the possibility of utility ties. The random closed

set D�
κpxi,νi; δq contains alternatives up to the p|D| � κ � 1q-th best in D, where “best” is

defined with respect to W pxic,νi; δq. Due to the possibility of ties, |D�
κpxi,νi; δq| may be

larger than |D| � κ� 1.1

To see that our characterization in Theorem 3.1 applied with this new definition of

D�
κpxi,νi; δq remains sharp, note that the model-implied optimal choice for an agent with

attributes pxi,νiq, utility parameters δ, and choice set G is no longer unique. But this

additional multiplicity of optimal choices is incorporated into D�
κpxi,νi; δq, and all model

restrictions continue to be embedded in the requirement that di P D�
κpxi,νi; δq, almost

surely. The proof of Theorem 3.1 continues to apply, although at the price of additional

notation (a selection mechanism that determines the probability with which each optimal

choice d�i pG,xi,νi; δq P arg maxcPGW pxic,νi; δq is selected when multiple alternatives are

optimal for a realization G of Ci).

1To illustrate, consider the case |D| � 5 and κ � 4. When utility ties occur with positive probability,
for a given px,ν; δq it might be, for example, that three alternatives are tied as first best, and hence at least
one of them is in any realization of Ci and |D�

κpxi,νi; δq| � 3.
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S1.3 Computational Simplifications

We omit the subscript i on random variables and random sets throughout this section.

S1.3.1 Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of ΘI as the collection of θ P Θ that

satisfy a finite number of conditional moment inequalities, indexed by the test sets K � D.

In this subsection we provide results to reduce the collection of test sets K for which to check

the inequalities from all nonempty proper subsets of D to a smaller collection.

Theorem S1.1: Let the assumptions of Theorem 3.1 hold. Then the following steps yield

a sufficient collection of sets K, denoted K, on which to check the inequalities in equation

(3.5) to verify if θ P ΘI . Initialize K � tK � D : |K|   κu. Then:

(1) For a given set K P K, if it holds that @ν P V an element of K (possibly different across

values of ν) is among the |D| � κ� 1 best alternatives in D, then set K � KzK;2

(q) Repeat the following step for q � 2, . . . , κ � 1. Take any set K P K such that K �
Kq�1 Y tcju for some Kq�1 with |Kq�1| � q � 1 and tcju P K, Kq�1 P K after Steps (1)

and (q-1). If Eν P V such that both cj and at least one element of Kq�1 are among the

|D| � κ� 1 best alternatives in D, then set K � KzK.

If the set D�
κ does not depend on δ, as in our application in Sections 4–5, the collection K

is invariant across θ P Θ.

Proof. Step (1) follows because under the stated condition, PrpD�
κpx,ν; δq XK � Hq � 1.

Step (q) follows because under the stated condition, the events tD�
κpx,ν; δqXtcju � Hu and

tD�
κpx,ν; δqXKq�1 � Hu are disjoint. This implies that the right-hand side of the inequality

in equation (3.5) is additive, and therefore that inequality evaluated at K is implied by the

ones evaluated at tcju and at Kq�1.

Depending on the structure of the realizations of the random set D�
κpx,ν; δq, Theorem

S1.1 can be further simplified. The following corollary provides an example.

Corollary S1.1: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of

D�
κpx,ν; δq are given by adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κu, for j � 1, . . . , κ.

2Here the notation KzK indicates that the set K is removed from the collection of sets K. In practice,
one can implement this step first on sets K : |K| � 1, and for K that satisfies the condition remove from K
all sets K 1 � K. Then repeat the procedure for the remaining sets K : |K| � 2, and so forth.
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Then the collection of test sets K in Theorem S1.1 can be initialized to

K �
!
tc1u, tc1, c2u, tc1, c2, c3u, � � � , tc1, c2, . . . , cκ�1u,

tc|D|u, tc|D|, c|D|�1u, tc|D|, c|D|�1, c|D|�2u, � � � , tc|D|, c|D|�1, . . . , c|D|�κ�2u
)
, (S1.2)

which contains 2pκ� 1q elements.

Proof. We first establish that if the inequalities in equation (3.5) are satisfied for sets of size

|K| � m, m � 1, . . . , κ � 1, comprised of adjacent alternatives (with respect to |D|), then

they are satisfied for all K � D.

Let the inequality in equation (3.5) be satisfied for K1 � tcj, cj�1, . . . , cpu, for K2 �
tcq, cq�1, . . . , ctu, with p   q�1 so that K1XK2 � H, and for K � K1Ytcp�1, . . . , cq�1uYK2

(the set that comprises all adjacent alternatives between cj and ct). We then show that the

inequality for K1 Y K2 is redundant. The same argument generalizes to sets comprised of

the union of disjoint collections of adjacent alternatives.

Consider first the case that q � p ¥ |D| � κ� 1. Then D�
κpx,ν; δq cannot intersect both

K1 and K2, and hence

P pD�
κpx,ν; δqXpK1YK2q � H;γq � P pD�

κpx,ν; δqXK1 � H;γq�P pD�
κpx,ν; δqXK2 � H;γq

and the result follows.

Consider next the case that q � p   |D| � κ� 1. We claim that in this case

D�
κpx,ν; δq XKzpK1 YK2q � H ñ D�

κpx,ν; δq X pK1 YK2q � H. (S1.3)

To establish this claim, take cs P tcp�1, . . . , cq�1u � KzpK1 YK2q. Suppose cs P D�
κpx,ν; δq.

Then either cp P D�
κpx,ν; δq or cq P D�

κpx,ν; δq, because |D�
κpx,ν; δq| � |D| � κ � 1. The

claim follows because K1 Y K2 � K, and hence Prpd P K1 Y K2|xq ¤ Prpd P K|xq, while

P pD�
κpx,ν; δq X pK1 YK2q � H;γq � P pD�

κpx,ν; δq XK � H;γq due to equation (S1.3).

Finally, we show that it suffices to verify equation (3.5) for the sets K P K as specified in

equation (S1.2). Consider first the case where |D|�κ�1 ¡ κ�1. Then for all 1   p   q   κ

and K � tcp, cp�1, . . . , cqu, it holds that |K|   κ� 1 and, denoting Kc � DzK,

P pD�
κpx,ν; δq XK � H;γq � 1� P pD�

κpx,ν; δq � Kc;γq
� 1� P pD�

κpx,ν; δq � tc1, . . . , cp�1u;γq � P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq

� 1� P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq, (S1.4)
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where the first equality follows by definition, the second follows because D�
κpx,ν; δq is com-

prised of |D| � κ � 1 adjacent alternatives, and the last follows because P pD�
κpx,ν; δq �

tc1, . . . , cp�1u;γq � 0 as |tc1, . . . , cp�1u|   κ� 1   |D| � κ� 1. On the other hand,

Prpd P tcp, . . . , cquq ¤ Prpd P tc1, . . . , cquq,

and hence if equation (3.5) is satisfied for K � tc1, . . . , cqu, it is also satisfied for K �
tcp, cp�1, . . . , cqu for all 1   p   q   κ. A similar reasoning, with appropriate modifications,

holds for sets K � tc|D|�q�1, cp�1, . . . , c|D|�p�1u.
When |D| � κ � 1 ¤ κ � 1, equation (S1.4) continues to hold as stated whenever p  

|D| � κ � 1. If p ¡ |D| � κ � 1, the result follows by the additivity in the second line of

equation (S1.4) and the additivity of probabilities, because

Prpd P K|xq ¤ P pD�
κpx,ν; δq XK � H;γq ô Prpd P Kc|xq ¥ P pD�

κpx,ν; δq � Kc;γq.

Hence, the inequality for K � tcp, . . . , cqu is implied whenever it is satisfied for K �
tc1, . . . , cpu and K � tcq, . . . , c|D|u.

The following claim establishes that Corollary S1.1 applies when ν P R and the alterna-

tives in the feasible set are vertically differentiated.

Claim S1.1: Let Assumptions 2.1 and 2.2 hold. Let D � tc1, . . . , c|D|u and ν � ν P R.

Suppose that: (I) for every pair of alternatives cj, ck P D, j   k, and given any x P X , there

exists a unique threshold ν̄j,kpxq such that for all ν ¡ ν̄j,kpxq alternative cj has greater utility

than alternative ck and for all ν   ν̄j,kpxq alternative ck has greater utility than alternative

cj; and (II) for every alternative cj P D and given any x P X , there exists a ν P R such that

cj is the first best in D. Then, given any px, νq P X � R and any κ ¥ 2, the set D�
κpx,ν; δq

comprises adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κu, for j � 1, . . . , κ.

Proof. The proof builds on Fact 4 in Barseghyan et al. (2020). Let |D| ¥ 3 (otherwise

the claim holds trivially). Take any x P X and any three alternatives cj, cj�1, cj�2 P D.

Conditions (I) and (II) imply that ν̄j,j�1pxq ¡ ν̄j,j�2pxq ¡ ν̄j�1,j�2pxq. (In particular,

ν̄j�1,j�2pxq ¡ ν̄j,j�2pxq ¡ ν̄j,j�1pxq violates condition (II) because cj�1 is not first best for

any ν P R, and every other permutation violates condition (I) due to the transitivity of

utility). In other words, the alternatives are vertically differentiated in that cj is first best

for all ν ¡ ν̄j,j�1pxq; cj�1 is first best for all ν P pν̄j�1,j�2pxq, ν̄j,j�1pxqq; and cj�2 is first

best for all ν   ν̄j�1,j�2pxq. Consequently, for all ν P R, the only possible strict utility

rankings of the three alternatives are: Upcjq ¡ Upcj�1q ¡ Upcj�2q (when ν ¡ ν̄j,j�1pxq);
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Upcj�1q ¡ Upcjq ¡ Upcj�2q (when ν̄j,j�1pxq ¡ ν ¡ ν̄j,j�2pxq); Upcj�1q ¡ Upcj�2q ¡ Upcjq
(when ν̄j,j�2pxq ¡ ν ¡ ν̄j�1,j�2pxq); and Upcj�2q ¡ Upcj�1q ¡ Upcjq (when ν   ν̄j�1,j�2pxq).
Thus, alternative cj�1 is never the third best among the three alternatives. This implies that

if cj and cj�2 both have greater utility than a fourth alternative cm, m R tj, j � 1, j � 2u,
then cj�1 also has greater utility than cm. It follows that for any px, νq P X � R, the set

D�
κpxi,νi; δq comprises adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κq, for j � 1, . . . , κ.

When Assumption 3.1 is maintained, the logic of Theorem S1.1 can be used to obtain a

collection of sufficient test sets K on which to verify the inequalities in (3.7), by applying

its Steps 2.1-2.(κ � 1) to the random sets D�
q px,ν; δq, q � κ, . . . , |D|. Further simplifica-

tions are possible when interest centers on specific projections of ΘI , using the fact that

D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ. As discussed following Corollary 3.1, when As-

sumption 3.1 is maintained the projection of ΘI on rδ;γs is obtained by setting πκpx;ηq � 1

and πqpx;ηq � 0, q � κ � 1, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in Theorem S1.1 applied

only to D�
κpx,ν; δq deliver the sufficient collection of sets K on which to verify (3.7) to ob-

tain the sharp identification region for rδ;γs. On the other hand, the projection of ΘI on

πqpx;ηq, q � κ � 1, . . . , |D|, is obtained by setting πlpx;ηq � 0 for all l R tq, κu, and that

on πκpx;ηq by setting πlpx;ηq � 0 for all l � κ � 2, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in

Theorem S1.1 applied, respectively, to only D�
κpx,ν; δq and D�

q px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πq,

q � κ � 1, . . . , |D|, and applied only to D�
κpx,ν; δq and D�

κ�1px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πκ.

The two corollaries that follow illustrate the specific adaptations of Theorem S1.1 that

we use in our application in Sections 4–5. Proofs are omitted because the corollaries follow

immediately from Theorem S1.1.

Corollary S1.2: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν � ν P R with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π5. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kztcj, cku;

2. Set K � Kztcj, ck, clu for all j, k, l P t1, 2, 3, 4, 5u.

Corollary S1.3: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν � ν P R with support r0, ν̄s, ν̄   8. Then the following
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steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π4. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kzttcj, cku, tDztcj, ckuuu;
2. For any set K � tcj, ck, clu � D such that tcj, cku P K after Step 1, if Eν P r0, ν̄s such

that both cl and at least one element of tcj, cku are among the best 3 alternatives in D,

then set K � Kztcj, ck, clu;
3. For any set K P K, if @ν P r0, ν̄s one element of K, possibly different across values of

ν, is among the best 2 alternatives in D, then set K � KzK.

In our application in Sections 4–5, the number of inequalities obtained through application

of the foregoing results (taking into account the 65 hypercubes on pµ, p̄qq is 6� 65 � 390 for

the sharp identification region of γ; 17 � 65 � 1, 105 for the sharp identification region of

π5; and 15� 65 � 975 for the sharp identification region of π4.

S1.4 An Equivalent Characterization Based on Convex
Optimization

The characterization in Theorem 3.1 can equivalently be written in terms of a convex opti-

mization problem.

Corollary S1.4: Let Assumptions 2.1 and 2.2 hold and let Θ � ∆� Γ. Then

ΘI �
$&%θ P Θ : max

uPR|D|:||u||¤1

��uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq

�
uJqd

�
	
dP pτ ;γq

�� � 0,x� a.s.

,.- ,

(S1.5)

where ppxq � rPrpd � c1|xq . . . Prpd � c|D||xqsJ and, for a given d� P D�
κpx,ν; δq, qd

� �
r1pd� � c1q . . . 1pd� � c|D|qsJ.

Proof. We establish the equivalence between equations (3.5) in the paper and (S1.5) here.3

Due to the positive homogeneity in u of uJppxq � ³
τPV

maxd�PD�
κ px,τ ;δq u

Jqd
�
dP pτ ;γq, we

have that

uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq
uJqd

�

dP pτ ;γq ¤ 0 (S1.6)

holds for all u : ||u|| ¤ 1 if and only if expression (S1.6) holds for all u P R|D|. Consider

the specific subset of vectors U � tu P R|D| : uj P t0, 1u, j � 1, . . . , |D|u. Each vector u P U

3The argument of proof goes through similar steps as in Molchanov and Molinari (2018, Theorem 3.28).
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uniquely corresponds to a subset Ku � tc1u1, . . . , c|D|u|D|u. For a given u, uJqd
� � 1 if

d� P Ku and uJqd
� � 0 otherwise. Hence, the corresponding inequality in (S1.6) reduces to

Prpd P Ku|xq � uJppxq ¤ E

�
max

d�PD�
κ px,τ ;δq

uJqd
� |x;γ

�
� P pD�

κpx,ν; δq XKu � H;γq.

It then follows that any θ in the set defined in equation (S1.5) belongs to the set defined in

equation (3.5) because tK : K � Du � tKu : u P Uu.
Conversely, take a θ in the set defined by equation (3.5). Then, by Theorem A.1, there

exists a selection d� of D�
κpx,ν; δq such that for all c P D and x � a.s., Prpd � c|xiq �

Prpd� � c|xiq. Hence, θ belongs to the set defined in equation (S1.5).

As the set D�
κpx,ν; δq is comprised of the |D| � κ� 1 best alternatives in D, it can have

only a finite number of realizations, as discussed in Section 3.4, which we denote D1, . . . , Dh.

Hence, the characterization in equation (S1.5) can be rewritten as

ΘI �
#
θ P Θ : max

uPR|D|:||u||¤1

�
uJppxq �

ḩ

j�1

�
max
d�PDj

uJqd
�



P pD�

κpx,ν; δq � Dj;γq
�
� 0,x� a.s.

+
.

This means that to determine whether a given θ P Θ belongs to ΘI , it suffices to maximize

an easy-to-compute superlinear, hence concave, function over a convex set, and check if the

resulting objective value vanishes. Several efficient algorithms in convex programming are

available to solve this problem; see, for example, the Matlab software for disciplined convex

programming CVX (Grant and Boyd 2010).

S1.5 Additively Separable Extreme Value Type 1 Unobserved
Heterogeneity

We now explain how to compute P pD�
κpx,ν; δq XK � H;γq when ν � pυ, pεc, c P Dqq and

W pxc,ν; δq � ωpxc,υ; δq � εc, with εc independently and identically distributed Extreme

Value Type 1 and independent of υ, as in a mixed logit (McFadden and Train 2000).

Given a realization G of the choice set and c̃ P G (and no utility ties), we have

Prpd�pG,x,ν; δq � c̃|x,υq � PrpW pxc̃,ν; δq ¥ W pxc,ν; δq @c P G|υq
� exppωpxc̃,υ; δqq°

cPG exppωpxc,υ; δqq . (S1.7)

Conditional on υ, one can leverage the closed-form expressions in equation (S1.7) to compute

P pD�
κpx,ν; δq X K � H;γq so that numerical integration is needed only for υ. The same

result applies, with q replacing κ, to compute P pD�
q px,ν; δq XK � H;γq in Corollary 3.1.
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Theorem S1.2: Suppose that ν � pυ, pεc, c P Dqq and W pxc,ν; δq � ωpxc,υ; δq � εc,

with εc independently and identically distributed Extreme Value Type 1 and independent of υ.

Conditional on υ, any P pD�
κpx,ν; δqXK � H|υ;γq can be computed as a linear combination

over different sets G of expression (S1.7). Hence, any P pD�
κpx,ν; δq X K � H;γq can be

computed as an integral with respect to the distribution of υ of linear combinations over

different sets G of expression (S1.7).

To prove this theorem, we first establish two auxiliary results. The first one states that

the probability of at least one alternative in K being preferred to all alternatives in DzK is

the sum over all elements of K that each is first best in D.

Claim S1.2: Conditional on υ, the probability that at least one alternative in a set K � D
is better than all alternatives in the set DzK is given by

Prp_c1PK W pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzK|υq �
¸
c1PK

exppωpxc1 ,υ; δqq°
cPD exppωpxc,υ; δqq .

Proof of Claim S1.2. We first establish equivalence of the following events:

tDc1 P K s.t. W pxc1 ,ν; δq ¡ W pxc,ν; δq; @c P DzKu
ðñ Yc1PKtW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c P Dzc1u. (S1.8)

The right-to-left implication in (S1.8) is immediate. The left-to-right implication can be

established by contradiction, observing that the complement of the event in the right-hand

side of (S1.8) is that there exists a c P DzK that is preferred to all other alternatives. The

result then follows because the events in the right-hand side of (S1.8) are disjoint.

Next, recall that, as discussed in Section 3.4, the set D�
κpx,ν; δq can only take on a finite

number of realizations, denoted D1, . . . , Dh, with |Dj| � |D| � κ� 1 for all j � 1, . . . , h. We

show how to compute the probability of any of these realizations.

Claim S1.3: For each j � 1, . . . , h, P pD�
κpx,ν; δq � Dj|υ;γq can be computed as a

linear combination of expression (S1.7) for different sets G.

Proof of Claim S1.3. Note that

P pD�
κpx,ν; δq � Dj|υ;γq � P pW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c1 P Dj, @c P DzDj|υ;γq.

Given this, the proof proceeds sequentially. Suppose |D�
κpx,ν; δq| � 1. Then the result

follows immediately (with G � D). Suppose |D�
κpx,ν; δq| � 2. Then we have Dj � tc1, c2u
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for some c1, c2 P D, and

P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu X tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq
� P pW pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzDj|υ;γq�P pW pxc2 ,ν; δq ¡ W pxc,ν; δ|υ;γq @c P DzDjq

� P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu Y tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq.

The first term in this expression can be computed by applying equation (S1.7) withG � Dzc2;
the second term can be computed by applying equation (S1.7) with G � Dzc1; the last term,

by Claim S1.2, can be computed as the sum over c̃ P Dj of equation (S1.7) with G � D.

For |D�
κpx,ν; δq| ¥ 3 one can proceed iteratively using the inclusion/exclusion formula

and applying Claim S1.2.

With these results in hand, we prove Theorem S1.2.

Proof of Theorem S1.2. By Claim S1.3 we can compute P pD�
κpx,ν; δq � Dj|υ;γq for each

Dj such that |Dj| � |D|�κ�1 as a linear combination of expression (S1.7) with different sets

G. To obtain the result in Theorem S1.2, for each set K one can simply sum P pD�
κpx,ν; δq �

Dj|υ;γq over the sets Dj such that Dj XK � H.

S2 Additional Details on Statistical Inference

As explained in Section 5, we base our confidence sets for the vector θ on the Kolmogorov-

Smirnov test statistic suggested by Andrews and Shi (2013, equation (3.7) on p. 618) [here-

after, AS], which in our framework simplifies to

Tnpθq � n max
j�1,...,J ;KPK

max

"
m̄n,K,jpθq
σ̂n,K,jpθq , 0

*2

where m̄n,K,jpθq and σ̂n,K,jpθq are defined in Section 5. Our application of the method

proposed by AS computes bootstrap-based critical values to obtain a confidence set

CS � tθ P Θ : Tnpθq ¤ ĉn,1�α�ξpθq � ξu

where ξ ¡ 0 is an arbitrarily small constant which we set equal to 10�6 as suggested by AS

(p. 625). In practice, we evaluate Tnpθq and the bootstrap-based critical value ĉn,1�α�ξpθq on

a grid of values of θ designed to give good coverage of the pEpνq,Varpνqq-space to obtain a

precise description of the confidence set for this pair of parameters. To explain how this grid is

constructed, we note that given the assumption that νi � Betapγ1, γ2q with support r0, 0.03s,
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Epνq P 0.03 � p0, 1s and Varpνq P 0.0009 � p0, 0.25s. We therefore obtain a grid of values

over pγ1, γ2q comprised of 665,603 points, such that the associated grid on pEpνq,Varpνqq has

first coordinate in 0.03�r0.0005, 0.9995s with step size 0.03� 0.0005, and second coordinate

in 0.0009� p0.0005, 0.25s with step size 0.0009� 0.0005.4 The approximation of ĉn,1�α�ξpθq
is based on the bootstrap procedure detailed in AS (Section 9) and uses 1,000 bootstrap

replications.5 The procedure takes as inputs a GMS function ϕ, a GMS sequence τn such

that τn Ñ 8 as n Ñ 8, and a non-decreasing sequence of positive constants βn such that

βn{τn Ñ 0 as n Ñ 8, which together are used to determine which moment inequalities are

sufficiently close to binding to contribute to the limiting distribution of Tnpθq. We use the

GMS function proposed by AS (equation (4.10) on p. 627):6

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1

�βn otherwise,

and we set τn � p0.3 lnnq1{2 and βn � p0.4 lnn{ ln lnnq1{2 as recommended by AS (p. 643).

Similar to AS, the KMS procedure takes as inputs a GMS function ϕ and a GMS sequence

τn.7 To simplify computations, we use the hard threshold GMS function:8

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1

�8 otherwise.

The procedure also requires a regularization parameter ρ ¥ 0, which (like ϕ and τn) enters

the calibration of ĉfn,1�α and introduces a conservative distortion that is required to obtain

uniform coverage of projections. The smaller is the value of ρ, the larger is the conservative

distortion, but the higher is the confidence that the critical value is uniformly valid in

situations where the local geometry of ΘI makes inference especially challenging. For a

discussion, see KMS (Section 2.2). We choose the value of ρ as follows. We begin with the

recommendation in KMS (Section 2.4). To further guard against possible irregularities in

the local geometry of ΘI , we reduce the resulting value of ρ by 20 percent.

4To obtain confidence intervals on π5, π4, and π3, we first evaluate Tnpθq on a coarser grid and compare
it with the AS critical value. For each πq, q � 3, 4, 5, we then refine the grid around the extreme values of
πq that are not rejected, for a final step size of 0.01 on πq and 0.05 on each component of pγ1, γ2q.

5Compared to the description in AS (Section 9), note that our moment inequalities are of the ¤ form,
whereas AS’s are of the ¥ form.

6AS label the GMS sequence κn, but we use τn to avoid confusion with our use of κ for the (known and
fixed) minimum choice set size in Assumption 2.2.

7Our findings based on the AS and KMS methods are robust to the choice of tuning parameters, as
indicated by results available from the authors upon request.

8This function was proposed by Andrews and Soares (2010) and labeled ϕp1q on p. 131 of their article.
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S3 Additional Results

S3.1 Claim Probabilities

The claim probabilities originate from Barseghyan et al. (2018). We estimate the house-

holds’ claim probabilities using the company’s claims data. We assume that household i’s

auto collision claims in year t follow a Poisson distribution with mean λit. We also assume

that the household’s deductible choice does not influence its claim rates λit (Assumption

4.1(II)). We treat the household’s claim rate as a latent random variable and assume that

lnλit � X1
itβ � εi, where Xit is a vector of observables and exppεiq follows a Gamma distri-

bution with unit mean and variance φ. We perform a Poisson panel regression with random

effects to obtain maximum likelihood estimates of β and φ. In an effort to obtain the most

precise estimates, we use the full set of auto collision claims data, which comprises 1,349,853

household-year records. For each household, we calculate a fitted claim rate pλi conditional

on the household’s observables at the time of first purchase and its subsequent claims experi-

ence. More specifically, pλi � exppX1
i
pβqEpexppεiq|Yiq, where Yi records household i’s claims

experience after purchasing the policy and Epexppεiq|Yiq is calculated using the maximum

likelihood estimate of φ. In principle, a household may experience one or more claims during

the policy period. We assume that households disregard the possibility of experiencing more

than one claim (Assumption 4.1(I)). Given this, we transform pλi into a claim probability

µi � 1 � expp�pλiq, which follows from the Poisson probability mass function, and round it

to the nearest half percentage point. We treat µi as data.

S3.2 Deductible Choices

Table S3.1 reports the sample distribution of deductible choices by octiles of base price p̄i

and claim probability µi. The octiles are the hypercubes referenced in Sections 5 and S2

(other than the one that contains all households).

S3.3 Subgroup Results

Figure S3.1 depicts the AS 95 percent confidence set for pEpνiq,Varpνiqq for population

subgroups based on gender, age, and insurance score of the principal driver. In addition,

Table S3.2 reports (i) the KMS 95 percent confidence interval for the mean of νi and (ii) 95

percent confidence intervals for the 25th and 75th percentiles of νi based on projections of

the AS confidence set. For the mean, we report the actual confidence interval as well as the

risk premium, for a lottery that yields a loss of $1000 with probability 10 percent, implied

11



Table S3.1: Deductible Choices by Octiles of p̄ and µ

p̄ µ Percent choosing deductible
octile octile Obs. $100 $200 $250 $500 $1000

1 1 2,756 3.3 31.2 18.9 43.8 2.9
1 2 2,901 3.6 31.8 18.7 43.6 2.2
1 3 2,661 2.9 32.1 20.0 43.6 1.5
1 4 2,113 3.4 34.2 20.6 40.8 1.0
1 5 2,116 3.9 32.1 20.2 42.2 1.5
1 6 1,630 4.2 34.5 21.9 38.9 0.6
1 7 1,233 4.4 34.1 22.8 38.7 0.0
1 8 660 5.0 39.4 25.6 30.0 0.0
2 1 1,949 1.0 20.8 17.0 57.1 4.0
2 2 1,944 2.0 22.3 16.9 56.4 2.5
2 3 1,543 1.9 25.7 19.1 50.7 2.6
2 4 2,152 2.0 23.1 18.5 54.4 2.0
2 5 1,320 2.3 26.7 18.0 50.8 2.2
2 6 1,979 1.6 25.6 20.1 51.1 1.6
2 7 1,584 1.8 26.5 22.6 47.9 1.3
2 8 1,151 2.0 26.5 22.7 48.7 0.2
3 1 1,362 0.7 20.4 14.3 59.8 4.7
3 2 1,914 0.8 18.5 14.6 62.1 3.9
3 3 2,127 0.8 19.8 16.1 60.0 3.2
3 4 1,518 1.3 20.3 17.7 59.4 1.4
3 5 2,255 1.0 19.9 17.6 59.4 2.1
3 6 1,773 0.8 19.9 18.4 59.1 1.9
3 7 1,729 1.2 21.1 20.0 56.7 1.1
3 8 1,602 1.2 20.7 22.2 54.9 0.9
4 1 1,340 0.7 12.7 13.7 67.5 5.3
4 2 1,458 0.8 14.1 15.2 65.8 4.3
4 3 1,632 0.7 15.1 15.4 66.1 2.8
4 4 1,595 0.6 14.7 16.6 64.8 3.3
4 5 1,606 0.8 14.3 17.1 65.4 2.5
4 6 1,705 0.6 16.1 15.2 65.5 2.6
4 7 1,974 0.7 15.4 17.0 65.5 1.5
4 8 1,914 1.0 17.3 17.7 62.8 1.2
5 1 1,126 0.4 11.4 12.6 70.5 5.2
5 2 1,547 0.1 11.8 11.9 71.7 4.5
5 3 1,609 0.5 10.4 13.0 71.6 4.5
5 4 1,522 0.5 10.6 14.5 71.4 3.0
5 5 2,066 0.7 10.8 12.8 72.1 3.5
5 6 1,697 0.6 12.5 14.7 69.2 2.9
5 7 1,801 0.2 12.2 14.6 70.9 2.2
5 8 2,128 0.5 11.9 17.1 68.8 1.6
6 1 1,303 0.3 6.7 9.1 78.3 5.6
6 2 1,403 0.2 6.9 11.4 75.5 6.0
6 3 1,326 0.5 7.3 11.2 76.8 4.2
6 4 1,784 0.3 8.1 11.2 76.2 4.2
6 5 1,589 0.2 7.9 9.8 78.0 4.1
6 6 1,725 0.5 8.9 12.0 74.7 3.9
6 7 2,061 0.1 7.3 11.2 78.4 3.1
6 8 2,363 0.1 9.0 12.3 76.3 2.2
7 1 1,521 0.3 5.2 6.9 81.1 6.5
7 2 1,351 0.1 5.6 7.5 80.1 6.7
7 3 1,665 0.2 4.1 8.6 80.2 6.8
7 4 1,646 0.1 5.0 6.7 81.7 6.4
7 5 1,726 0.1 5.0 7.4 82.6 5.0
7 6 1,865 0.1 4.9 7.9 82.5 4.6
7 7 2,045 0.1 5.7 7.6 82.4 4.2
7 8 2,452 0.2 5.4 9.1 81.0 4.4
8 1 2,636 0.0 1.3 2.5 74.2 21.9
8 2 1,553 0.1 1.5 1.8 80.3 16.4
8 3 1,463 0.0 1.6 3.1 82.8 12.4
8 4 1,568 0.0 1.4 2.7 80.2 15.6
8 5 1,384 0.0 1.8 2.0 80.6 15.6
8 6 1,570 0.1 2.0 3.0 78.9 16.1
8 7 1,501 0.0 1.2 2.5 82.7 13.7
8 8 1,698 0.1 2.1 3.3 81.0 13.5

Notes: Analysis sample (111,890 households).
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Figure S3.1: AS 95 percent confidence sets for pEpνq,Varpνqq.
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Table S3.2: Distribution of Absolute Risk Aversion

Implied risk premium
Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Male 0.00104 0.00321 $061 $279 $000 $073 $076 $426
Female 0.00101 0.00377 $059 $339 $000 $117 $081 $485
Young 0.00044 0.00306 $022 $263 $000 $095 $000 $407
Old 0.00107 0.00432 $063 $393 $000 $073 $095 $548
Low insurance score 0.00042 0.00315 $021 $273 $000 $073 $007 $425
High insurance score 0.00102 0.00501 $060 $452 $000 $127 $085 $591

Notes: 95 percent confidence intervals. LB = lower bound. UB = upper bound. Implied risk
premia for a lottery that yields a loss of $1000 with probability 10 percent.

by each bound. For the percentiles, we report only the implied risk premia. For the most

part, the subgroup results are comparable to the results for all households. The notable

exceptions are the lower bounds on the mean for households with young principal drivers

and households with low insurance scores. These lower bounds are on the order of 4 � 10�4

(which implies a risk premium of about $20), whereas the corresponding lower bounds for the

other subgroups and the population are on the order of 10�3 (which implies a risk premium

of about $60).9 Strikingly, the lower bounds on the 75th percentile for these two subgroups

correspond to risk premia of 17 cents and $7, respectively.

Table S3.3 reports KMS 95 percent confidence intervals for π5, π4, and π3 for the same

population subgroups. The interesting quantities are the upper bounds on π5 and π4. The

former is the maximum fraction of households whose deductible choices can be rationalized

with full size choice sets, while the latter is the maximum fraction of households whose

deductible choices can be rationalized with full-1 choice sets.10 We find, inter alia, that: (i)

at least 70 percent of households with female principal drivers require limited choice sets

to explain their deductible choices, whereas at least 74 percent of households with male

principal drivers require limited choice sets; (ii) at least 73 percent of households with old

principal drivers require limited choice sets to explain their deductible choices, whereas at

least 75 percent of households with young principal drivers require limited choice sets; and

(iii) at least 67 percent of households with low insurance scores require limited choice sets

to explain their deductible choices, whereas at least 73 percent of households with high

insurance scores require limited choice sets.11

9Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that a result for all households is not a weighted average of the corresponding results within a subgroup.

10With κ � 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is one minus the upper
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Table S3.3: Distribution of Choice Set Size

π5 π4 π3
(full) (full-1) (full-2)

LB UB LB UB LB UB

Male 0.00 0.26 0.00 0.85 0.15 1.00
Female 0.00 0.30 0.00 0.90 0.10 1.00
Young 0.00 0.25 0.00 1.00 0.00 1.00
Old 0.00 0.27 0.00 0.96 0.04 1.00
Low insurance score 0.00 0.33 0.00 1.00 0.00 1.00
High insurance score 0.00 0.27 0.00 1.00 0.00 1.00

Notes: KMS 95 percent confidence intervals. LB = lower bound. UB
= upper bound.

S3.4 Admissible Probability Density Functions

Figure S3.2 depicts a 95 percent confidence set for an outer region of admissible probability

density functions of νi for all households. To construct the outer region (shaded in grey),

we find at each point on a grid of 101 values of νi the minimum and maximum values of

all probability density functions implied by values of θ in the AS 95 percent confidence

set. This gives us 101 points on the lower and upper envelopes of admissible probability

density functions. In other words, we obtain pointwise sharp lower and upper bounds on

the set of admissible probability density functions. Although the bounds are pointwise

sharp, the region is labeled an outer region because not all probability density functions

in it are consistent with the distribution of observed choices. The figure also superimposes

the predicted density functions of νi based on point estimates obtained under the UR and

ASR models. The UR predicted density function does not lie entirely inside the confidence

set, whereas the AR predicted density function does (although we note that this does not

necessarily imply that the true choice formation process is an ASR process).

S3.5 Suboptimal Choices

As we state in Section 5.2.1, with full size choice sets, our model cannot explain the frequency

of the $200 deductible in our data. The reason is that, with full size choice sets, our model

satisfies the following conditional rank order property, which is a generalization of the rank

order property established by Manski (1975) for random utility models that are linear in the

nonrandom parameters and feature an additive i.i.d. disturbance in the utility function.

bound on π4, and the upper bound on π3 is one.
11Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible

that the upper bound on π5 for all households is not a weighted average of the upper bounds on π5 within
a subgroup. The same is true for the upper bound on π4 (and, therefore, for the lower bound on π3).
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Figure S3.2: Confidence set for outer region of admissible probability density functions of ν.

Notes: The figure depicts a 95 percent confidence set for an outer region of admissible probability
density functions of νi. It also superimposes the implied probability density functions of νi based
on point estimates obtained under the UR and ASR models.

Property S3.1 (Conditional Rank Order Property): For all c, c1 P D, Prpd � c1|x,νq ¥
Prpd � c|x,νq if and only if W pxc1 ,ν; δq ¥ W pxc,ν; δq, px,νq � a.s.

Indeed, any model that satisfies an analogous property is incapable of explaining the

relative frequency of $200 in the distribution of observed deductible choices.12 This includes,

inter alia, the conditional logit model (McFadden 1974), the mixed logit model (McFadden

1974; McFadden and Train 2000), the multinomial probit model (e.g., Hausman and Wise

1978), and semiparametric models such as the one in Manski (1975). At the same time, not

all choice set formation processes can explain the relative frequency of $200 in our data. For

instance, UR cannot but ASR can.

Claim S3.1: Take the model in Section 2. Suppose for a given c P D there exist a, b P D,

a � b � c, such that for each ν P V, W pxa,ν; δq ¡ W pxc,ν; δq or W pxb,ν; δq ¡ W pxc,ν; δq.
Then for any distribution of ν with support V:

(I) Property S3.1 implies Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(II) Under UR, Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(III) Under ASR, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible.

12In the case of a model with additively separable noise where ν � pυ, pεc, c P Dqq and W pxc,ν; δq �
ωpxc,υ; δq � εc, the analogous property is: For all c, c1 P D, Prpd � c1|x,υq ¥ Prpd � c|x,υq if and only if
ωpxc1 ,υ; δq ¥ ωpxc,υ; δq, px,υq � a.s.
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Proof. The implication in Claim S3.1(I) follows from Property S3.1 by integrating with

respect to the distribution of ν.

Claim S3.1(II) follows from the fact that the UR model satisfies Property S3.1. Suppose

alternative c1 is preferred to alternative c. Alternative c1 may be chosen from choice sets that

contain both c1 and c and from choice sets that contain c1 but not c. However, alternative

c may be chosen only from choice sets that contain c but not c1. Because all choice sets,

conditional on the draw of |C|, are equiprobable, c1 is chosen more frequently than c.

We can establish Claim S3.1(III) with a trivial example. Suppose ϕpaq � ϕpbq � 0

and ϕpcq � 1. Then Prpd � a|xq � Prpd � b|xq � 0 and Prpd � c|xq ¡ 0 provided

there exists a positive measure of values ν P V such that W pxc,ν; δq ¡ W pxc1 ,ν; δq for all

c1 P Dzta, bu, c1 � c. More generally, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible

provided ϕpaq and ϕpbq are sufficiently low, ϕpcq is sufficiently high, and c is the first best

alternative in Dzta, bu for some positive measure of values ν P V .

We emphasize that Claim S3.1 does not rely on Assumption 3.1 or the assumptions of the

empirical model in Section 4.1. It thus exemplifies a new approach to testing assumptions

on choice set formation in any random utility model under weak restrictions on the utility

function and without parametric restrictions on the distribution of preferences or choice sets.

An analogous claim holds in the case of a model with additively separable disturbances,

such as the mixed logit model in Section 5.1.1, for any distribution of υ with support Υ,

where the predicate is: Suppose for a given c P D there exist a, b P D, a � b � c, such that

for each υ P Υ, ωpxa,υ; δq ¡ ωpxc,υ; δq or ωpxb,υ; δq ¡ ωpxc,υ; δq.
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