Appendix (For Online Publication)

to

Community Development with Externalities and Corrective Taxation

Levon Barseghyan
Department of Economics
Cornell University
Ithaca NY 14853
lb247@cornell.edu

Stephen Coate
Department of Economics
Cornell University
Ithaca NY 14853
sc163@cornell.edu

On-line Appendix

Omitted details of the Proof of Proposition 6

Proof of Lemma 1

We need to show that the housing rule $H^{\prime}(H)$ in (41) solves

$$
\max _{H^{\prime}}\left\{\begin{array}{c}
\sum_{t=0}^{\infty} \beta^{t}\left[\left(1-H_{t}\left(H^{\prime}\right)\right) \bar{\theta}+S\left(H_{t}\left(H^{\prime}\right)\right)\right]+\sum_{t=0}^{\infty} \beta^{t} \frac{\left(H_{t}\left(H^{\prime}\right)-H\right) \mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)}{H} \\
-\mu\left[\sum_{t=0}^{\infty}(\mu \beta)^{t}\left(1-H_{t}\left(H^{\prime}\right)\right) \bar{\theta}\right] \\
\text { s.t. } H^{\prime} \geq H
\end{array}\right\} .
$$

This requires showing that for any $H \in\left[H_{0}, 1\right]$, it is the case that $H^{\prime}(H) \geq H$ and that there does not exist an alternative housing level \hat{H} satisfying the constraint that $\hat{H} \geq H$ which generates a higher value of the objective function.

First, let $H \in[\widetilde{H}, 1]$. Then we have that $H^{\prime}(H)=H$. Moreover, for any alternative housing level $\hat{H}>H$, the equilibrium play of future residents would be to simply keep housing at \hat{H}. Thus, the problem faced by the residents is identical to that in the commitment case and, since $\widetilde{H} \geq H^{*}$, we know that the optimal strategy is just to maintain the current housing stock.

Second, let $H \in\left[H_{0}, \widetilde{H}\right)$. Then we have that $H^{\prime}(H)=H_{u}(H)$. Note that the assumptions on $H_{u}(H)$ together with the fact that $H \in\left[H_{0}, \widetilde{H}\right)$ imply that $H_{u}(H)>H$. Deviation to some housing level $\hat{H} \in[H, \widetilde{H}]$ cannot increase the value of the objective function because in this region the objective function arising if future housing choices are determined by $H_{u}(H)$ is the same as that arising if future housing choices are determined by $H^{\prime}(H)$. Deviation to some $\hat{H} \in[\widetilde{H}, 1]$ cannot be profitable either. To understand why, note that once such a deviation occurs, the equilibrium play of future residents would be to simply keep housing at \hat{H}. The problem of optimally choosing such a deviation amounts to

$$
\max _{\hat{H}}\left\{\begin{array}{c}
\frac{(1-\hat{H}) \bar{\theta}+S(\hat{H})}{1-\beta}+\frac{(\hat{H}-H) \mathcal{B}(\hat{H})}{H}-\frac{\mu(1-\hat{H}) \bar{\theta}}{1-\mu \beta} \\
\text { s.t. } \hat{H} \geq \widetilde{H}
\end{array}\right\}
$$

This problem has the same objective function as in problem (35). In the proof of Proposition 3, we established this objective function is concave. Moreover, for $H<H^{*}$ it has a maximum at $\mathcal{H}(H)<\widetilde{H}$ and for $H \geq H^{*}$ it has a maximum at $H<\widetilde{H}$. It follows that the objective function
will have the highest value at the corner: \widetilde{H}. Hence such a deviation cannot be profitable because, as we have just shown, $H_{u}(H)$ provides a higher payoff than \widetilde{H}.

Proof of (43)

We need to show that the first order condition

$$
\begin{gather*}
\sum_{t=0}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+\left(H_{t}\left(H^{\prime}\right)-H\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H} H_{t}^{\prime}\left(H^{\prime}\right)= \tag{A59}\\
(\bar{\theta}+s)\left(\sum_{t=0}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)
\end{gather*}
$$

implies that the solution housing rule $H_{u}(H)$ satisfies the condition

$$
\begin{gather*}
\left(1-H^{\prime}\right) \bar{\theta}+S-2 s H^{\prime}-C(1-\beta)-\underline{\pi}-\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H^{\prime} \\
=\bar{\theta}\left(H^{\prime}-\mu H\right)\left[1+\sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right]+\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right)\left(H^{\prime}-H\right)\left[1+\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right] \tag{A60}
\end{gather*}
$$

Note first that the first order condition (A59) can be rewritten as

$$
\begin{gathered}
\sum_{t=0}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+H_{t}\left(H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H} H_{t}^{\prime}\left(H^{\prime}\right)= \\
\sum_{t=0}^{\infty} \beta^{t} \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right) H_{t}^{\prime}\left(H^{\prime}\right)+(\bar{\theta}+s)\left(\sum_{t=0}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right) .
\end{gathered}
$$

Using the fact that

$$
\mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)=-\left(\bar{\theta}+s+\frac{\bar{\pi}-\underline{\pi}}{L}\right)
$$

this implies that

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+H_{t}\left(H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H} H_{t}^{\prime}\left(H^{\prime}\right)=-\sum_{t=0}^{\infty} \beta^{t}\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H_{t}^{\prime}\left(H^{\prime}\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right) \tag{A61}
\end{equation*}
$$

Next we claim that

$$
\begin{gather*}
\sum_{t=1}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+H_{t}\left(H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H} H_{t}^{\prime}\left(H^{\prime}\right)= \tag{A62}\\
-\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right)\left(\frac{H^{\prime} \sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)}{H}\right)-\frac{\mu \beta \bar{\theta} H^{\prime} \sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}^{\prime}\left(H^{\prime}\right)}{H} .
\end{gather*}
$$

To see this, observe that the first order condition for $H_{1}\left(H^{\prime}\right)$ implies that

$$
\begin{gathered}
\sum_{t=0}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)\right)+\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)-H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)\right)}{H^{\prime}} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right)= \\
(\bar{\theta}+s)\left(\sum_{t=0}^{\infty} \beta^{t} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right)\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right)
\end{gathered}
$$

Multiplying this through by $\beta H_{1}^{\prime}\left(H^{\prime}\right)$ we obtain

$$
\begin{gathered}
\sum_{t=0}^{\infty} \beta^{t+1} \frac{\mathcal{B}\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)\right)+\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)-H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H_{1}\left(H^{\prime}\right)\right)\right)}{H^{\prime}} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right) H_{1}^{\prime}\left(H^{\prime}\right)= \\
(\bar{\theta}+s)\left(\sum_{t=0}^{\infty} \beta^{t+1} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right) H_{1}^{\prime}\left(H^{\prime}\right)\right)-\mu \beta \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right) H_{1}^{\prime}\left(H^{\prime}\right)
\end{gathered}
$$

which implies that
$\sum_{t=1}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+\left(H_{t}\left(H^{\prime}\right)-H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H^{\prime}} H_{t}^{\prime}\left(H^{\prime}\right)=(\bar{\theta}+s)\left(\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)-\mu \beta \bar{\theta} \sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}^{\prime}\left(H^{\prime}\right)$.
This follows from the fact that for all $t \geq 2$

$$
H_{t}^{\prime}\left(H_{1}\left(H^{\prime}\right)\right) H_{1}^{\prime}\left(H^{\prime}\right)=H_{t}^{\prime}\left(H^{\prime}\right)
$$

This can be rewritten as

$$
\begin{gathered}
\sum_{t=1}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+H_{t}\left(H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H^{\prime}} H_{t}^{\prime}\left(H^{\prime}\right)= \\
\sum_{t=1}^{\infty} \beta^{t} \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right) H_{t}^{\prime}\left(H^{\prime}\right)+(\bar{\theta}+s)\left(\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)-\mu \beta \bar{\theta} \sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}^{\prime}\left(H^{\prime}\right) .
\end{gathered}
$$

Using again the fact that

$$
\mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)=-\left(\bar{\theta}+s+\frac{\bar{\pi}-\underline{\pi}}{L}\right)
$$

this implies that
$\sum_{t=0}^{\infty} \beta^{t} \frac{\mathcal{B}\left(H_{t}\left(H^{\prime}\right)\right)+H_{t}\left(H^{\prime}\right) \mathcal{B}^{\prime}\left(H_{t}\left(H^{\prime}\right)\right)}{H} H_{t}^{\prime}\left(H^{\prime}\right)=-\sum_{t=0}^{\infty} \beta^{t}\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H_{t}^{\prime}\left(H^{\prime}\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)$.
Multiplying through by H^{\prime} / H yields (A62).
Using (A62), we can rewrite (A61) as follows:

$$
\begin{gathered}
\frac{\mathcal{B}\left(H^{\prime}\right)+H^{\prime} \mathcal{B}^{\prime}\left(H^{\prime}\right)}{H}-\frac{\bar{\pi}-\underline{\pi}}{L}\left(\frac{H^{\prime} \sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)}{H}\right)-\frac{\mu \beta \bar{\theta} H^{\prime} \sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}^{\prime}\left(H^{\prime}\right)}{H}= \\
-\sum_{t=0}^{\infty} \beta^{t}\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H_{t}^{\prime}\left(H^{\prime}\right)-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right) .
\end{gathered}
$$

Multiplying through by H yields

$$
\begin{aligned}
& \mathcal{B}\left(H^{\prime}\right)+H^{\prime} \mathcal{B}^{\prime}\left(H^{\prime}\right)-\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H^{\prime} \sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)-\bar{\theta} H^{\prime} \sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)= \\
& \quad-\sum_{t=0}^{\infty} \beta^{t}\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H H_{t}^{\prime}\left(H^{\prime}\right)-H \mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)= \\
& -\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H-\sum_{t=1}^{\infty} \beta^{t}\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H H_{t}^{\prime}\left(H^{\prime}\right)-H \mu \bar{\theta}-H \mu \bar{\theta} \sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right) .
\end{aligned}
$$

Thus, (A61) implies that

$$
\begin{gather*}
\mathcal{B}\left(H^{\prime}\right)+H^{\prime} \mathcal{B}^{\prime}\left(H^{\prime}\right)+\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H^{\prime}+\bar{\theta} H^{\prime}= \tag{A63}\\
\left(H^{\prime}-H\right)\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right)\left(1+\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)+\left(H^{\prime}-\mu H\right) \bar{\theta}\left(1+\sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right) .
\end{gather*}
$$

Since

$$
\mathcal{B}(H)=(1-H) \bar{\theta}+S(H)-(\pi(H)+C(1-\beta))
$$

we have that

$$
\mathcal{B}\left(H^{\prime}\right)+H^{\prime} \mathcal{B}^{\prime}\left(H^{\prime}\right)=\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)-\left(\pi\left(H^{\prime}\right)+C(1-\beta)\right)-H^{\prime}\left(\bar{\theta}+s+\frac{\bar{\pi}-\underline{\pi}}{L}\right)
$$

Substituting this into (A63), reveals that

$$
\begin{aligned}
& \left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)-\left(\pi\left(H^{\prime}\right)+C(1-\beta)\right)-H^{\prime}\left(\bar{\theta}+s+\frac{\bar{\pi}-\underline{\pi}}{L}\right)+\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H^{\prime}+\bar{\theta} H^{\prime} \\
= & \left(H^{\prime}-H\right)\left(\frac{\bar{\pi}-\underline{\pi}}{L-H_{0}}\right)\left(1+\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right)+\left(H^{\prime}-\mu H\right) \bar{\theta}\left(1+\sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right) .
\end{aligned}
$$

This means that

$$
\begin{gathered}
\left(1-H^{\prime}\right) \bar{\theta}+S-2 s H^{\prime}-C(1-\beta)-\underline{\pi}-\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right) H^{\prime} \\
=\bar{\theta}\left(H^{\prime}-\mu H\right)\left[1+\sum_{t=1}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right]+\left(\frac{\bar{\pi}-\underline{\pi}}{L}\right)\left(H^{\prime}-H\right)\left[1+\sum_{t=1}^{\infty} \beta^{t} H_{t}^{\prime}\left(H^{\prime}\right)\right]
\end{gathered}
$$

which is (A60).

Omitted details of the Proof of Proposition 7

Deviations to a housing level $H^{\prime}>H^{* *}$
Given the equilibrium play following this deviation, the payoff from it can be written as

$$
\frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}+\frac{\left(H^{\prime}-H\right) \mathcal{B}\left(H^{\prime}\right)}{H(1-\beta)}-\frac{\mu}{1-\mu \beta}\left(1-H^{\prime}\right) \bar{\theta}
$$

Thus, to show that the deviation is not profitable, we need to show that

$$
\begin{array}{r}
\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}+\frac{(\widetilde{H}-H) \mathcal{B}(\widetilde{H})}{H(1-\beta)}-\frac{\mu}{1-\mu \beta}(1-\widetilde{H}) \bar{\theta} \geq \\
\frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}+\frac{\left(H^{\prime}-H\right) \mathcal{B}\left(H^{\prime}\right)}{H(1-\beta)}-\frac{\mu}{1-\mu \beta}\left(1-H^{\prime}\right) \bar{\theta}
\end{array}
$$

or, equivalently, that

$$
\frac{1}{H}\left[\frac{(\widetilde{H}-H) \mathcal{B}(\widetilde{H})}{1-\beta}-\frac{\left(H^{\prime}-H\right) \mathcal{B}\left(H^{\prime}\right)}{1-\beta}\right] \geq \frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)-((1-\widetilde{H}) \bar{\theta}+S(\widetilde{H}))}{1-\beta}+\frac{\mu \bar{\theta}\left(H^{\prime}-\widetilde{H}\right)}{1-\mu \beta}
$$

This is equivalent to

$$
\begin{gathered}
\frac{1}{H}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \geq \\
\mu \bar{\theta}\left[\frac{H^{\prime}}{1-\mu \beta}-\frac{\widetilde{H}}{1-\mu \beta}\right]+\frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}-\frac{\mathcal{B}\left(H^{\prime}\right)}{1-\beta}-\left(\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}-\frac{\mathcal{B}(\widetilde{H})}{1-\beta}\right) .
\end{gathered}
$$

Substituting in the expressions for $\mathcal{B}\left(H^{\prime}\right)$ and $\mathcal{B}(\widetilde{H})$ this is equivalent to

$$
\frac{1}{H}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \geq \mu \bar{\theta}\left[\frac{H^{\prime}}{1-\mu \beta}-\frac{\widetilde{H}}{1-\mu \beta}\right]+\frac{\pi\left(H^{\prime}\right)-\pi(\widetilde{H})}{1-\beta}
$$

Condition (55) implies that

$$
\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}-P(\widetilde{H}) \geq \mu \bar{\theta}\left[\sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}(\widetilde{H})-\frac{\widetilde{H}}{1-\mu \beta}\right]
$$

which is equivalent to

$$
\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}-\frac{\mu}{1-\mu \beta}(1-\widetilde{H}) \bar{\theta} \geq P(\widetilde{H})-\mu \sum_{t=1}^{\infty}(\mu \beta)^{t-1}\left(1-H_{t}(\widetilde{H})\right) \bar{\theta}=V(\widetilde{H})
$$

where $V(H)$ is the value function in (25). Moreover, since $V(H)$ is the value function for problem (39), we must have that

$$
V(\widetilde{H}) \geq \frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}+\frac{\left(H^{\prime}-\widetilde{H}\right) \mathcal{B}\left(H^{\prime}\right)}{\widetilde{H}(1-\beta)}-\frac{\mu\left(1-H^{\prime}\right) \bar{\theta}}{1-\mu \beta}
$$

Thus, we have that

$$
\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}-\frac{\mu(1-\widetilde{H}) \bar{\theta}}{1-\mu \beta} \geq \frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}+\frac{\left(H^{\prime}-\widetilde{H}\right) \mathcal{B}\left(H^{\prime}\right)}{\widetilde{H}(1-\beta)}-\frac{\mu\left(1-H^{\prime}\right) \bar{\theta}}{1-\mu \beta}
$$

which implies that

$$
\begin{aligned}
\frac{\widetilde{H} \mathcal{B}(\widetilde{H})}{\widetilde{H}(1-\beta)}- & \frac{H^{\prime} \mathcal{B}\left(H^{\prime}\right)}{\widetilde{H}(1-\beta)}+\frac{(1-\widetilde{H}) \bar{\theta}+S(\widetilde{H})}{1-\beta}-\frac{\mathcal{B}(\widetilde{H})}{1-\beta}-\frac{\mu(1-\widetilde{H}) \bar{\theta}}{1-\mu \beta} \geq \\
& \frac{\left(1-H^{\prime}\right) \bar{\theta}+S\left(H^{\prime}\right)}{1-\beta}-\frac{\mathcal{B}\left(H^{\prime}\right)}{(1-\beta)}-\frac{\mu\left(1-H^{\prime}\right) \bar{\theta}}{1-\mu \beta}
\end{aligned}
$$

or

$$
\frac{1}{\widetilde{H}}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \geq \mu \bar{\theta}\left[\frac{H^{\prime}}{1-\mu \beta}-\frac{\widetilde{H}}{1-\mu \beta}\right]+\frac{\pi\left(H^{\prime}\right)-\pi(\widetilde{H})}{1-\beta}
$$

Since H^{\prime} exceeds \widetilde{H}, it follows that

$$
\frac{1}{\widetilde{H}}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \geq \mu \bar{\theta}\left[\frac{H^{\prime}}{1-\mu \beta}-\frac{\widetilde{H}}{1-\mu \beta}\right]+\frac{\pi\left(H^{\prime}\right)-\pi(\widetilde{H})}{1-\beta}>0
$$

Since $H \leq \widetilde{H}$, it therefore follows that

$$
\begin{aligned}
& \frac{1}{H}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \geq \frac{1}{\widetilde{H}}\left[\frac{\widetilde{H}}{1-\beta} \mathcal{B}(\widetilde{H})-\frac{H^{\prime}}{1-\beta} \mathcal{B}\left(H^{\prime}\right)\right] \\
\geq & \mu \bar{\theta}\left[\frac{H^{\prime}}{1-\mu \beta}-\frac{\widetilde{H}}{1-\mu \beta}\right]+\frac{\pi\left(H^{\prime}\right)-\pi(\widetilde{H})}{1-\beta},
\end{aligned}
$$

as required.

Properties of $\varphi(H)$

It only remains to show that $\varphi(H)$ is concave and that $\lim _{H \searrow 0} \varphi(H)=-\infty$. For the former, note that $\sum_{t=1}^{\infty}(\mu \beta)^{t-1} H_{t}(H)$ is linear in H because $H^{\prime}(H)$ and, and hence, all $H_{t}(H)$ are linear in H. Furthermore, $\frac{(1-H) \bar{\theta}+S(H)}{1-\beta}+\mu \bar{\theta} \frac{H}{1-\mu \beta}$ is also linear in H. From (50), we know that

$$
P(H)=\sum_{t=0}^{\infty} \beta^{t}\left[\left(1-H_{t}\left(H^{\prime}(H)\right)\right) \bar{\theta}+S\left(H_{t}\left(H^{\prime}(H)\right)\right)\right]+\sum_{t=0}^{\infty} \beta^{t} \frac{\left(H_{t}\left(H^{\prime}(H)\right)-H\right) \mathcal{B}\left(H_{t}\left(H^{\prime}(H)\right)\right)}{H}
$$

and from (53), we know that

$$
\begin{aligned}
P^{\prime}(H) & =-\mu \bar{\theta} \sum_{t=0}^{\infty}(\mu \beta)^{t} H_{t}^{\prime}\left(H^{\prime}(H)\right) \frac{d H^{\prime}(H)}{d H}-\sum_{t=0}^{\infty} \beta^{t} \frac{H_{t}\left(H^{\prime}(H)\right)}{H^{2}} \\
& =-\frac{\mu \gamma \bar{\theta}}{1-\mu \beta \gamma}-\sum_{t=0}^{\infty} \beta^{t} \frac{H_{t}\left(H^{\prime}(H)\right)}{H^{2}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
P^{\prime \prime}(H) & =\sum_{t=0}^{\infty} \beta^{t} \frac{2 H_{t}\left(H^{\prime}(H)\right)-H H_{t}^{\prime}\left(H^{\prime}(H)\right) \frac{d H^{\prime}(H)}{d H}}{H^{2}} \\
& =\sum_{t=0}^{\infty} \beta^{t} \frac{2 H_{t}\left(H^{\prime}(H)\right)-\gamma^{t+1} H}{H^{2}}>0 .
\end{aligned}
$$

Thus, $P(H)$ is convex, implying that $\varphi(H)$ is concave.
To show the limit result, note that .

$$
\lim _{H \backslash 0} \varphi(H) \equiv-\lim _{H \backslash 0} P(H)
$$

and, since $\lim _{H \backslash 0} H^{\prime}(H)=\xi>0$,
$\lim _{H \backslash 0} \sum_{t=0}^{\infty} \beta^{t}\left[\left(1-H_{t}\left(H^{\prime}(H)\right) \bar{\theta}+S\left(H_{t}\left(H^{\prime}(H)\right)\right)\right]+\sum_{t=0}^{\infty} \beta^{t} \frac{\left(H_{t}\left(H^{\prime}(H)\right)-H\right) \mathcal{B}\left(H_{t}\left(H^{\prime}(H)\right)\right)}{H}=\infty\right.$.

