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On-line Appendix

Omitted details of the Proof of Proposition 6

Proof of Lemma 1

We need to show that the housing rule  0() in (41) solves
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This requires showing that for any  ∈ [0 1], it is the case that 
0() ≥  and that there does

not exist an alternative housing level ̂ satisfying the constraint that ̂ ≥  which generates a

higher value of the objective function.

First, let  ∈ [ e 1] Then we have that  0() = . Moreover, for any alternative housing

level ̂  , the equilibrium play of future residents would be to simply keep housing at ̂.

Thus, the problem faced by the residents is identical to that in the commitment case and, sincee ≥ ∗, we know that the optimal strategy is just to maintain the current housing stock.

Second, let  ∈ [0 e) Then we have that  0() = (). Note that the assumptions

on () together with the fact that  ∈ [0 e) imply that ()  . Deviation to some

housing level ̂ ∈ [ e] cannot increase the value of the objective function because in this region
the objective function arising if future housing choices are determined by() is the same as that

arising if future housing choices are determined by  0(). Deviation to some ̂ ∈ [ e 1] cannot

be profitable either. To understand why, note that once such a deviation occurs, the equilibrium

play of future residents would be to simply keep housing at ̂ The problem of optimally choosing

such a deviation amounts to

max
̂
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(1−̂)+(̂)

1− +
(̂−)B(̂)


− (1−̂)

1−

 ̂ ≥ e
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This problem has the same objective function as in problem (35). In the proof of Proposition 3,

we established this objective function is concave. Moreover, for   ∗ it has a maximum at

H()  e and for  ≥ ∗ it has a maximum at   e It follows that the objective function
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will have the highest value at the corner: e Hence such a deviation cannot be profitable because,

as we have just shown, () provides a higher payoff than e

Proof of (43)

We need to show that the first order condition
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implies that the solution housing rule () satisfies the condition
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Note first that the first order condition (A59) can be rewritten as
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Next we claim that
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To see this, observe that the first order condition for 1(
0) implies that
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This follows from the fact that for all  ≥ 2
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Multiplying through by  0 yields (A62).

Using (A62), we can rewrite (A61) as follows:
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Multiplying through by  yields
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which is (A60).

Omitted details of the Proof of Proposition 7

Deviations to a housing level  0  ∗∗

Given the equilibrium play following this deviation, the payoff from it can be written as
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Thus, to show that the deviation is not profitable, we need to show that
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as required.

Properties of ()

It only remains to show that () is concave and that lim&0 () = −∞. For the former, note
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Thus,  () is convex, implying that () is concave.

To show the limit result, note that .
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